• Title/Summary/Keyword: soil and water pressure

Search Result 649, Processing Time 0.025 seconds

Stability of unsaturated infinite slope under rainfall-induced infiltration (강우침투시 불포화 무한사면의 안정성 평가)

  • Song, Young-Suk;Hwang, Woong-Ki;Lee, Nam-Woo;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.71-78
    • /
    • 2010
  • The stability analysis of unsaturated infinite slope under rainfall-induced infiltration condition was performed using the generalized effective stress that unifies both saturated and unsaturated condition recently proposed by Lu and Likos(2004, 2006). The Soil-Water Characteristic Curve (SWCC) of the sand with the relative density of 75% was first measured for both drying and wetting processes. The Hydraulic Conductivity Function (HCF) and Suction Stress Characteristic Curve (SSCC) were subsequently estimated. Also, under the rainfall-induced infiltration condition transient seepage analysis of unsaturated infinite slope was performed using the finite element program, SEEP/W. Based on these results, the stability of unsaturated infinite slope under rainfall-induced infiltration condition was examined considering the suction stress. According to the results, the negative pore water pressure and water content within the soil changed with time due to the infiltration. Also, the variation of those caused the variation of suction stress and then the factor of safety of slope changed consequently during the rainfall period.

  • PDF

The Effect of Cattle Slurry on N-Dynamics and $NO_3$ Leaching in Pasture Mixtures (목초 생산성과 액상분뇨 시용이 토양의 질소동태와 $NO_3$ 용탈에 미치는 영향)

  • 류종원
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.1
    • /
    • pp.43-50
    • /
    • 1997
  • The aim of the study is to describe the fate and transformation of nitrogen in grassland ecosystems. Field experiments were conducted using sandyloam soil under variabling conditions: Zen, fertilization, reduced slurry application(l20kg N $ha^{-1}\;yr^{-1}$), usual sluny application (240 kg N $ha^{-1}\;yr^{-1}$).Soil water samples were gathered with 120cm ceramic cups with initial pressure of 0.5 bar. Samples were collected twice a month and analysed for NO, colormetrically. Percolation was calculated as the difference between precipitation and potential evapotranspiration, and leaching as the product of percolation and nitrate content of the water h m the ceramic cups. The N$H_4$-N content in soil had no significant effect on slurry application, but high slurry application on grassland resulted in high N$O_3$-N content in soil. The NO, concentration in soil water was remarkably variable during the year. The average N$O_3$, concentration during experiment became the lowest(8.5 mg/e ) without slurry application and highest with 240kOa cattle sluny(25.3 mg4 ). For each of the three different amounts of cattle sluny applied (0, 120, and 240kOa), the amount of N$O_3$-N leached per year were 12, 23 and 29kg/ha respectively. On grassland under the climatic conditions of Allgau showed enormous nitrate leaching, which has a p a t potential of polluting the ground water. The high pool of mineral N in the soil are the source for N$O_3$ leaching. The leaching of N$O_3$ cannot be avoided completely, but minimized by optimizing N fertilization rate.

  • PDF

The Optimum Irrigation Level and the Project Water Requirement for Upland Crops (밭 작물의 최적관개수준과 계획용수량 산정)

  • 윤학기;정상옥;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.1
    • /
    • pp.72-86
    • /
    • 1990
  • This study was carried out to get the basic information of irrigation plans for upland crops such as the optimum irrigation level and the project water requirement. Red peppers and cucumbers were cultivated in PVC pot lysimeters filled with 60cm deep clay loam soil. Four tensiometers were installed in each pot to measure the soil water pressure head. Six levels of irrigation were used. The results obtained from this study are summarized as follows: 1.The optimum irrigation level. The irrigation level of FC-PF2.7 was found to be the optimum level for both red pepper and cucumber with respect to the yield and the weight per fruit. In case of FC-PF2.7, total ET during the irrigation period were 1005.2mm for red pepper, and 429.6mm for cucumber, respectively. 2.soil moisture extraction patterns. Average soil moisture extraction patterns (SMEP)during the irrigation period were from 1st soil layer 43% : 32% : 16% : 9% for red pepper and 39% : 34% : 15% : 12% for cucumber, respectively. The extraction ratio of the upper soils showed very large values during the early stage of growth and decreased largely during the middle stage, and became larger in the last stage. 3.The project water requirement. Among the reference crop evapotranspiration(ETo) computation methods presented by FAO, the Penman method was found to be the best. The effective rainfall was computed by a modified USDA-SCS curve number equation. Availability ratios of the total rainfall during irrigation season were 59.2% for red pepper and 48.9% for cucumber, respectively. Net project water requirement of design year are 837.3mm for red pepper. and 502.Smm for cucumber, respectively.

  • PDF

Corrosion Reduction Techniques of Pipe Line Net Using DVGW (DVGW이론에 따른 상수관망의 부식방지에 관한 연구)

  • Choo, Tai-Ho;Kim, Ha-Il;Je, Sung-Jin;Ok, Chi-Youl
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.11
    • /
    • pp.310-316
    • /
    • 2006
  • Leakage of waterworks pipe line net cause loss of water resources, additional foundation of pressurization facilities from pressure loss and soil weakening near leaked pipe line, etc.. This makes it difficult to maintain and manage waterworks pipe line net and so cause serious economic loss. The rate of accounted water can be improved by monitoring always water pressure and flux, and so on. from isolated region, preparing positively against leakage accident and preventing leakage from occurring. Actually after isolating region, average rate of accounted water in this region went up 88.94% by continuously monitoring control of water pressure and inflow rate. It is about 9.44% higher than that of Busan metropolitan city in 2003, 79.5%.

  • PDF

A Study on the Liquefaction of Saturated Sand Layer under Oscillating Water Pressure (수압변동에 의한 포화 모래층의 액상화 연구)

  • Howoong Shon;Hyun-Chul Lim;Dae-Geun Lee
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.59-65
    • /
    • 2000
  • The vertical distribution of pore water pressure in the highly saturated sand layer under the oscillating water pressure is studied theoretically and experimentally. By the experiments it is shown that the water pressure acting on the sand surface propagates into the sand layer with the damping in amplitude and the lag in phase, and that the liquefaction, the state that the effective stress becomes zero, occurs under certain conditions. These experimental results are explained fairly well by the same theoretical treatment as for the ground water problems in the elastic aquifer. The main characteristics of liquefaction clarified by the analysis are as follows: 1) The depth of the liquified layer increases with the increase of the amplitude and the frequency of the oscillating water pressure. 2) The increase of the volume of the water and the air in the layer increases the liquified depth. Especially the very small amount of the air affects the liquefaction significantly. 3) The liquified depth decrease rapidly with the increase of the compressibility coefficient of the sand. 4) In the range beyond a certain value of the permeability coefficient the liquified depth decrease with the increase of the coefficient.

  • PDF

Effect of Highly Water Absorbing Polymer(K-sorb) on Soil Water Retention (토양의 수분보유(水分保有)에 미치는 초흡수성 고분자중합체(高分子重合體)(K-sorb)의 효과)

  • Yoo, Sun-Ho;Kwun, Sun-Kuk;Ro, Hee-Myeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.3
    • /
    • pp.173-179
    • /
    • 1990
  • The effect of a highly water absorbing polyacrylate polymer, commonly called K-sorb, at rates of 0.0, 0.05, 0.2, and 0.5% by weight on the water retention properties of three soils, and the longevities of these treatment effects were evaluated. Water retentions were measured for all the treatments by use of a pressure-plate extractor in the laboratory. Available water and three-phase distributions at moisture tensions of 0.01, 0.3, and 15b were calculated from water retentivity data. A randomized block experiment of Chinese cabbages was conducted to examine the effects and the longevities of the treatments(0.0, 0.05, 0.1, and 0.2%) on water retention of Jungdong sandy loam soil in the field. Water retentions for a loamy sand, sandy loam, and loam soil, treated with 0.2 and 0.5% K-sorb, were increased. K-sorb treatments were more effective in sandy soil than in loamy soils. Water contents for the 0.5% treatment were markedly greater than those for the 0.2% treatment at earth moisture tension. K-sorb only at a rate of 0.5% remained effective in water retention of each soil through repeated drying and wetting for 12 months. Duncan's multiple range showed 0.2% treatment was effective(at the level of 0.05) after 2 months but not after 10 months under field condition.

  • PDF

Characteristics of Structure Settlement due to Urban Railway Construction on Reclaimed Land (해안매립지반의 도시철도 시공에 따른 구조물 침하 특성 분석)

  • Shin, Eun-Chul;Rim, Yong-Kwan;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.23-33
    • /
    • 2012
  • The stability of urban railway foundation can be a problem due to the excessive settlement. The settlement at the base of railway is monitored by the installed settlement gauges. The piezometer and pore water pressure measurement device are installed to measure the variation of pore water pressure and ground water table during the continuous pullout of sheet piles which were used for the braced cut. The settlement of railway is predicted with using the computer program CAIN RDA. The input data for the numerical analysis are obtained from the field soil exploration data and soil properties. The surcharged load from landscaping over the ground surface and the weight of train are taken into account for the estimation of settlement. As a result of numerical analysis, the range of settlement for six different Sites is from 5.94 cm to 12.77 cm. Thus, the settlement level at Site 2 is occurred 12.77 cm which is higher than the allowable settlement of 10 cm.

Interactions of Wave and Poro-elastic Seabed under Uniform Current (일정 흐름장에서의 파랑과 다공질 탄성 해저지반의 상호작용)

  • Kim Beom-yeong;Lee Gil-Seong;Park U-Seon
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.45-52
    • /
    • 1997
  • Ocean seabed is usually covered with various types of marine soils. A marine soil is a mixture of two phases: soil particles that forms an interlocking skeletal frame, pore fluids that occupy a major portion of pore space. When gravity water waves propagate over a porous movable seabed, a hydrodynamic pressure on the fluid-seabed interface and fluid flow in the porous medium are induced. (omitted)

  • PDF

Lateral Stress and Pore Pressure During One-dimensional Consolidation of Clay (점토의 일차원 압밀과정중 작용하는 수평토압과 간극수압)

  • 김재영
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.5-10
    • /
    • 2004
  • The earth pressure coefficient at rest for clayey soils in the one-dimensional state, $K_0$ obtained from the triaxial test is not correct in principle because the seepage flow is radial and the displacement of soil elements is three-dimensional. Measurements of the earth pressure and the pore water pressure during one-dimension consolidation in the consolidometer ring are presented. The earth pressure and pore water pressure are measured directly by a circular part of the consolidometer ring of a floating type at its mid height. A plastic clay showed $K_0$=0.5 irrespective of pressure in the consolidometer ring.

On the effect of void ratio and particle breakage on saturated hydraulic conductivity of tailing materials

  • Ma, Changkun;Zhang, Chao;Chen, Qinglin;Pan, Zhenkai;Ma, Lei
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.159-170
    • /
    • 2021
  • Particle size of tailings in different areas of dams varies due to sedimentation and separation. Saturated hydraulic conductivity of high-stacked talings materials are seriously affected by void ratio and particle breakage. Conjoined consolidation permeability tests were carried out using a self-developed high-stress permeability and consolidation apparatus. The hydraulic conductivity decreases nonlinearly with the increase of consolidation pressure. The seepage pattern of coarse-particle tailings is channel flow, and the seepage pattern of fine-particle tailings is scattered flow. The change rate of hydraulic conductivity of tailings with different particle sizes under high consolidation pressure tends to be identical. A hydraulic conductivity hysteresis is found in coarse-particle tailings. The hydraulic conductivity hysteresis is more obvious when the water head is lower. A new hydraulic conductivity-void ratio equation was derived by introducing the concept of effective void ratio and breakage index. The equation integrated the hydraulic conductivity equation with different particle sizes over a wide range of consolidation pressures.