• Title/Summary/Keyword: soil and stream water quality

Search Result 165, Processing Time 0.033 seconds

Preliminary Nitrogen Removal Rates in Close-to-Nature Constructed Stream Water Treatment Wetland (하천수정화 근자연형 인공습지의 초기 질소제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.269-273
    • /
    • 2002
  • A 0.19 hectare stream water purification demonstration wetland was constructed and planted with cattails from April 2001 to May 2001. Some portions of its bottom surfaces adjacent to levees have a variety of slope of 1:4 $\sim$ 1:15 and two small open water areas were installed in the wetland. These make its shape closer to a natural wetlant Nitrogen removal was a major objective of the wetlant Waters of Sinyang Stream flowing into Kohung Esturiane Lake located southern coastal region of Korean Peninsula were pumped and funneled into it. Volumes and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Average inflow and outflow were 120 $m^3/d$ and 112 $m^3/d$, respectively. Hydraulic retention time was about 3.1 days. Average nitrate and total nitrogen removal rate for the early stage of the wetlands were 85.8 $mg/m^2/day$, 171.4 $mg/m^2/day$ respectively. Full establishment of cattails within a few years can develope litter-soil substrates and supply available carbon sources beneficial to the denitrification of nitrate. These can lead to increases of the nitrate retention rate. Short circuiting and dead zone areas which might be occurred due to the close-to-nature layout of the wetland were not observed during the monitoring period.

Assessment of sediment and total phosphorous loads using SWAT in Oenam watershed, Hwasun, Jeollanam-do (SWAT 모델을 이용한 외남천 유역의 토사 및 총인 유출량 분석)

  • Lee, Taesoo
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.1
    • /
    • pp.240-250
    • /
    • 2016
  • Monitoring for water quantity and quality was conducted in this study for 2 years (2012~2013) in Oenam Stream which is a tributary of Seomjin River and upstream of Juam Lake. Suspended solid and total phosphorous(TP) were monitored and analyzed, then water quantity and quality as well as their relation with landuses were identified based on the previous study. Flow showed the similar pattern with precipitation but some discrepancies existed due to the distance between weather station(Gwangju) and study area. Watershed was modeled based on observed data using SWAT(Soil and Water Assessment Tool). Model calibration was conducted using data obtained in 2012 and validation was conducted using data in 2013. The coefficient of determination ($R^2$) between observed and modeled showed 0.6644 and 0.5176 for flow and TP, respectively for model calibration period. For validation period, $R^2$ was 0.7529 for flow and 0.7057 for TP, which were higher than calibration period. Hot spots were determined for watershed management by analyzing the amount of sediment and TP outcome from each sub-watershed. TP loading by landuse determined that cropland, of which the area takes only 5% from entire watershed, generated 53.6% of TP and residential and cowshed was responsible for 23.5% of TP loading.

  • PDF

Watershed Water Quality Management Plan Using SWAT and Load Duration Curve (SWAT와 부하지속곡선을 이용한 유역 수질 관리방안)

  • KAL, Byung-Seok;CHO, So-Hyun;PARK, Chun-Dong;MUN, Hyun-Saing;JOO, Yong-Eun;PARK, Jae-Beom
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.41-57
    • /
    • 2021
  • This study evaluated the application of water quality management measures using the SWAT model and the effectiveness of the measures using the load duration curve targeting the Seohwacheon watershed located upstream of Daecheongho. As water quality management measures, artificial wetlands, reduction of neglected livestock, reduction of runoff from greenhouses, restoration of ecological rivers, application of LID technology, and management of point sources were applied. The applied technology evaluated the efficiency of water quality improvement measures by using the target water quality excess rate and the degree of load reduction for each sulfur through the load duration curve. The load duration curve was created by creating a long-term flow duration curve using SWAT and multiplying it by the target water quality. For the target water quality, the value corresponding to the 60th percentile was set as the target water quality using the 10-year data from the Okcheoncheon water quality observation point located in the downstream of Seohwacheon. Through this study, it was possible to confirm the applicability of various water quality measures through the SWAT model, and to examine the applicability of each period according to the sulfur through the load retention curve.

Comparison between the Spatially Integrated Model and the Spatially Distributed Model in the Nonpoint Source Contaminants of Groundwater (지하수 분산오염원에 대한 공간적분모형과 공간분포모형의 비교)

  • Lee, Do-Hun;Lee, Eun-Tae;Jeong, Sang-Man
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.177-187
    • /
    • 1998
  • The spatially integrated model (SIM) which can evaluate temporal variation of groundwater quality is proposed in the stream-aquifer setting entered by nonpoint source contaminants. And the developed SIM included unsaturated soil zone and was tested against the spatially distributed model (SDM) of the coupled advection-dispersion and Richards equations for the various hydrologic and aquifer simulating conditions. The result of the comparison showed that the average concentration responses of saturated aquifer and groundwater outflow between the SIM and the SDM was in good agreement, except for the case of the large dispersivity ratio and thick aquifer system. And it is shown that for the cases of the large dispersivity ratio and thick aquifer system the performance of the nonlinear SIM is better than that of the linear SIM for evaluating the average concentration of groundwater outflow response.

  • PDF

Derivation of Channel and Floodplain Width Regression Reflecting Korean Channel Shapes in SWAT Model (국내 하천 형상을 반영한 SWAT 모형 내 하천폭 및 홍수터폭 산정 회귀식 도출)

  • Lee, Hyeon-Gu;Han, Jeongho;Lee, Dongjun;Lim, Kyoung-Jae;Kim, Jonggun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.33-42
    • /
    • 2019
  • In this study, the channel and floodplain widths are indirectly measured for three different watersheds using satellite images to reflect the shape of Korean channels in the Soil and Water Assessment Tool (SWAT) model. For measuring the channel and floodplain widths, multiple satellite images were referred to ensure the widest width of certain points. In the single channel, the widths at the multiple points were measured. Based on the measured data, the regression equations were derived to estimate the channel and floodplain widths according to watershed areas. Applying these developed equations, this study evaluated the effect of the change of channel and floodplain widths on the SWAT simulation by comparing to the measured streamflow data. The developed equations estimated larger channel width and smaller floodplain compared with those calculated in the current SWAT model. As shown in the results, there was no considerable changes in the predicted streamflow using the current and developed equations. However, the flow velocity and channel depth calculated from the developed equations were smaller than those of the current equations. The differences were caused by the effect of different channel geometries used for calculating the hydraulic characteristics. The channel geometries also affected the water quality simulation in channels because the hydraulic characteristics calculated by the channel geometries are directly related to the water quality simulation. Therefore, application of the river cross-sectional regression equation reflecting the domestic stream shape is necessary for accurate water quantity / quality and water ecosystem simulation using hydrological model.

Estimation of Nonpoint Source Pollutant Loads for Rural Watershed by AvSWAT (AvSWAT를 이용한 농촌유역 비점원 오염물질 부하량 예측)

  • Kim, Jin-Ho;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;Han, Kuk-Heon;Ruy, Jong-Su;Kim, Suk-Cheol;Yun, Sun-Gang;Lee, Jeong-Taek;Kwun, Soon-Kuk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.12-17
    • /
    • 2007
  • This study was conducted to evaluate the characteristics of nonpoint source pollutants discharge from a small rural watershed. A typical rural area in Gongju City, Korea, was selected as the research site. Water quality and quantity in streams and rainfall samples were analyzed periodically from May to October 2005. Pollutant loads were estimated from a nonpoint source pollution model (AvSWAT, Arcview Soil and Water Assessment Tool). During the rainy season, from June 26 to 30 September 2005 and the dry season, before 26 June and after 30 September 2005, biological oxygen demands and chemical oxygen demands accounted for 91.3% and 93.7% of annual load, respectively, while total-N and total-P were 97.1% and 91.1% of annual load, respectively. The observed stream flow was $66.5m^3sec^{-1}$, while simulation stream flow was $66.2m^3sec^{-1}$. That can be assumed that simulation can be used to estimate the stream flow without practical measurement. However, the runoff trend following the occurrence of a storm event was not recorded properly.

The Effect of Rice Farming on the Shallow Ground Water Quality (논농사가 천층지하수의 수질에 미치는 영향)

  • Kang, Yun-Ju;Seo, Young-Jin;Lee, Dong-Hoon;Choi, Choong-Lyeal;Park, Man;Choi, Jyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.262-268
    • /
    • 2001
  • This study was conducted to investigate the effect of rice farming on seasonal, regional quality of shallow ground water. Ammonium $(NH_4\;^+)$ concentration of paddy soil was found to be the highest in April. Nitrate $(NO_3\;^-)$ concentration of soil and the ground water was determined to be lower during the growing period, May to August than any other periods. Seasonal change of K concentration in soils was shown to be in the tendency similar to that of $NH_4\;^+$. However, $Cl^-$ concentration of soils and the ground water was not changed significantly. $NH_4\;^+$, $NO_3\;^-$, K and $Cl^-$ concentration in W-3 ground water was higher than those of W-1 and W-2. It was clear that nutrients ($NH_4\;^+$, $NO_3\;^-$, K, $Cl^-$) should be leached from the adjacent soil to W-3 ground water by water stream. From this study it is apparent that nutrients can be easily leaching from sandy soils and transported into ground water, but rice plant farming is not non point source of groundwater pollution.

  • PDF

Assessment of Future Climate Change Impacts on Hydrological Behavior and Stream Water Quality using SWAT Model (SWAT 모형을 이용한 미래 기후변화가 충주댐 유역의 수문학적 거동 및 하천수질에 미치는 영향 평가)

  • Park, Jong-Yoon;Park, Min-Ji;Ahn, So-Ra;Park, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.57-61
    • /
    • 2009
  • 본 연구에서는 SWAT(Soil and Water Assessment Tool) 모형을 이용하여 미래 기후변화가 댐 유역의 하천수질에 미치는 영향을 분석하였다. 충주댐 상류유역($6,585.1km^2$)에 대해 민감도 분석을 통해 최적의 유출및 유사관련 매개변수를 선정하였으며, 충주호 유입하천 상류 2개 지점/영월1, 영월2)과 유역 출구점을 대상으로 일별 유출량 및 월별 수질자료를 바탕으로 모형의 보정(1998-2000)및 검증(2001-2003)을 실시하였다. 미래 기후자료는 IPCC(Intergovernmental Panel on Climate Change)에서 제공하는 SRES/Special Report on Emission Scenarios) A2, A1B, B1 기후변화시나리오의 MIROC3.2 hires와 ECHAM5-OM 모델의 결과 값을 이용하였다. 먼저 과거 30년 기후자료(1977-2006, baseline)를 바탕으로 각 모델별 20C3M(20th Century Climate Coupled Model)의 모의 결과 값을 이용하여 강수와 온도를 보정한 뒤 Change Factor(CF) Method로 Downscaling 하였으며, 미래 기후변화 시나리오는 2020s, 2050s, 2080s의 세 기간으로 나누어 각각 분석 하였다. 기후변화 시나리오 적용에 따른 SWAT 모의결과로부터 기후변화가 수문학적 거동 및 하천수질에 미치는 영향을 평가하였다.

  • PDF

Analysis of stream flow and water quality variation by external flows to Mangyung watersheds using SWAT (SWAT 모형을 이용한 만경강 유역으로의 외부유입량에 따른 수문·수질 변동 분석)

  • Woo, So Young;Lee, Ji Wan;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.41-41
    • /
    • 2019
  • 동진강, 만경강 그리고 연안 유역으로 이루어진 새만금유역은 농업이 발달한 지역이지만 유역 내 이용 가능한 수자원량이 부족하여 인근 유역인 금강과 섬진강 유역으로부터 용수를 공급받고 있다. 외부유입량은 연도별 강수량 변화에 따라 편차가 크기 때문에 새만금유역은 극한 가뭄과 홍수에 더욱 취약한 유역이다. 또한, 간척사업으로 새만금 방조제 건설에 따라 유역의 수질 환경이 중요한 지역 사회의 이슈이며 특히 만경강의 경우 심각한 수질 문제를 개선하기 위한 다양한 연구가 수행되어왔다. 이에 따라 본 연구에서는 Soil and Water Assessment Tool (SWAT) 모형을 이용하여 만경강유역으로 들어오는 외부유입량 변화에 따른 유역의 수문 및 수질 변화 양상을 분석하여 수질 문제 개선 방안을 제시하고자 한다. 외부유입량 변동 시나리오는 만경강으로 유입되는 용담댐의 방류량을 이용하였으며, 기존 외부유입량 데이터에 비례하도록 산정하였다. SWAT 모형의 신뢰성 있는 모의를 위해 유역 외부에 위치한 용담댐의 운영을 별도로 고려하였고 취수를 통한 유역 내 농업용수 사용 등을 고려하였다. 수위-유량 관측소의 일자료와 수질관측소의 자료를 이용하여 유출량, SS, T-N, 그리고 T-P에 대한 보정(2012~2014) 및 검증(2016~2018)을 수행하였다. 각각의 검보정지점에 대한 $R^2$, NSE, RMSE을 목적 함수로 사용하여 모형의 적용성을 확인하였고, 이렇게 구축된 SWAT 모형을 기반으로 외부유입량 시나리오에 따른 유역의 수문 수질 변화를 분석하였다.

  • PDF

Estimations of flow rate and pollutant loading changes of the Yo-Cheon basin under AR5 climate change scenarios using SWA (SWAT을 이용한 AR5 기후변화 시나리오에 의한 섬진강 요천유역의 유량 및 오염부하량 변화 예측)

  • Jang, Yujin;Park, Jongtae;Seo, Dongil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.221-233
    • /
    • 2018
  • Two climate change scenarios, the RCP (Representative Concentration Pathways) 4.5 and the RCP 8.5 in the fifth Assessment Report (AR5) by Intergovernmental Panel on Climate Change (IPCC), were applied in the Yocheon basin area using the SWAT (Soil and Water Assessment Tool) model to estimate changes in flow rates and pollutant loadings in the future. Field stream flow rate data in Songdong station and water quality data in Yocheon-1 station between 2013~2015 were used for model calibration. While $R^2$ value of flow rate calibration was 0.85 and $R^2$ value of water qualities were in the 0.12~0.43 range. The total study period was divided into 4 sub periods as 2030s (2016~2040), 2050s (2041~2070) and 2080s (2071~2100). The predicted results of flow rates and water quality concentrations were compared with results in calibrated periods, 2015s (2013~2015). In both RCP scenarios, flow rate and TSS (Total Suspended Solid) loadings were estimated to be in increasing trend while TN (Total Nitrogen) and TP (Total Phosphorus) loadings showed decreasing patterns. Also, flow rates and pollutant loadings showed larger differences between the maximum and the minimum values in RCP 4.5 than RCP 8.5 scenarios indicating more severe effect of drought and flood, respectively. Dependent on simulation period and rainfall periods in a year, flow rate, TSS, TN and TP showed different trends in each scenario. This emphasizes importance of considerations on time and space when analyzing climate change impacts of each variable under various scenarios.