• Title/Summary/Keyword: soil Interaction

Search Result 1,146, Processing Time 0.029 seconds

Soil-structure interaction and axial force effect in structural vibration

  • Gao, H.;Kwok, K.C.S.;Samali, B.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.1-19
    • /
    • 1997
  • A numerical procedure for dynamic analysis of structures including lateral-torsional coupling, axial force effect and soil-structure interaction is presented in this study. A simple soil-structure system model has been designed for microcomputer applications capable of reflecting both kinematic and inertial soil-foundation interaction as well as the effect of this interaction on the superstructure response. A parametric study focusing on inertial soil-structure interaction is carried out through a simplified nine-degree of freedom building model with different foundation conditions. The inertial soil-structure interaction and axial force effects on a 20-storey building excited by an Australian earthquake is analysed through its top floor displacement time history and envelope values of structural maximum displacement and shear force.

Nonlinear Soil-Structure Interaction Analysis Considering Complicated Soil Profile (복잡한 지반 형상을 고려한 비선형 지반-구조물상호작용 해석)

  • Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.1
    • /
    • pp.36-42
    • /
    • 2011
  • This paper presents a nonlinear soil-structure interaction analysis approach, which can consider precisely characteristics of structures, complicated soil profiles and nonlinear characteristics of soil. Although many methods have been developed to deal with the soil-structure interaction effects in past years, most of them are nearly unpractical since it is difficult to model complicated characteristics of structure and soil precisely. The presented approach overcomes the difficulties by adopting an maligned mesh generation approach and multi-linear model. The applicability of the proposed approach is validated and the effects of complicated characteristics of structure and soil on soil-structure interaction are investigated through the numerical example by the proposed nonlinear soil-structure interaction analysis approach.

Dynamic Behavior of a Long-Span Bridge Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 장대교량의 동적 거동)

  • Lim, Che-Min;Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.119-124
    • /
    • 2004
  • The effect of soil-structure interaction becomes important in the design of civil structures such as long-span bridges, which are constructed in the site composed of soft soil. Many methodologies have been developed to account for the proper consideration of soil-structure interaction effect. However, it is difficult to estimate soil-structure interaction effect accurately becaused of many uncertainties. This paper presents the results of study on soil-structure interaction and dynamic response of a long-span bridge designed in the site composed of soft soil. The effect of the soft soil was evaluated by the use of computer program SASSI and a long-span bridge structure was modeled by finite elements. Dynamic response characteristics of a long-span bridge considering soil-structure interaction wereinvestigated.

Soil interaction effects on sloshing response of the elevated tanks

  • Livaoglu, Ramazan
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.283-297
    • /
    • 2013
  • The aim of this paper is to investigate how the soil-structure interaction affects sloshing response of the elevated tanks. For this purpose, the elevated tanks with two different types of supporting systems which are built on six different soil profiles are analyzed for both embedded and surface foundation cases. Thus, considering these six different profiles described in well-known earthquake codes as supporting medium, a series of transient analysis have been performed to assess the effect of both fluid sloshing and soil-structure interaction (SSI). Fluid-Elevated Tank-Soil/Foundation systems are modeled with the finite element (FE) technique. In these models fluid-structure interaction is taken into account by implementing Lagrangian fluid FE approximation into the general purpose structural analysis computer code ANSYS. A 3-D FE model with viscous boundary is used in the analyses of elevated tanks-soil/foundation interaction. Formed models are analyzed for embedment and no embedment cases. Finally results from analyses showed that the soil-structure interaction and the structural properties of supporting system for the elevated tanks affected the sloshing response of the fluid inside the vessel.

Analysis of Soil-Structure Interaction Considering Complicated Soil Profile (복잡한 지층 형상을 고려한 지반-구조물 상호작용 해석)

  • Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.87-93
    • /
    • 2006
  • When a structure is constructed at the site composed of soil, the behavior of a structure is much affected by the characteristics of soil. Therefore, the effect of soil-structure interaction is an important consideration in the design of a structure at the site composed of soil. Precise analysis of soil-structure interaction requires a proper description of soil profile. However, most of approaches are nearly unpractical for soil exhibiting material discontinuity and complex geometry since those cannot consider precisely complicated soil profiles. To overcome these difficulties, an improved integration method is adopted and enables to integrate easily over an element with material discontinuity. As a result the mesh can be generated rapidly and highly structured, leading to regular and precise stiffness matrix. The influence of soil profile on the response is examined by the presented method. It is seen that the presented method can be easily used on soil-structure interaction problems with complicated soil profile and produce reliable results regardless of material discontinuities.

Seismic analysis of frame-strap footing-nonlinear soil system to study column forces

  • Garg, Vivek;Hora, Manjeet S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.645-672
    • /
    • 2013
  • The differential settlements and rotations among footings cannot be avoided when the frame-footing-soil system is subjected to seismic/dynamic loading. Also, there may be a situation where column(s) of a building are located near adjoining property line causes eccentric loading on foundation system. The strap beams may be provided to control the rotation of the footings within permissible limits caused due to such eccentric loading. In the present work, the seismic interaction analysis of a three-bay three-storey, space frame-footing-strap beam-soil system is carried out to investigate the interaction behavior using finite element software (ANSYS). The RCC structure and their foundation are assumed to behave in linear manner while the supporting soil mass is treated as nonlinear elastic material. The seismic interaction analyses of space frame-isolated footing-soil and space frame-strap footing-soil systems are carried out to evaluate the forces in the columns. The results indicate that the bending moments of very high magnitude are induced at column bases resting on eccentric footing of frame-isolated footing-soil interaction system. However, use of strap beams controls these moments quite effectively. The soil-structure interaction effect causes significant redistribution of column forces compared to non-interaction analysis. The axial forces in the columns are distributed more uniformly when the interaction effects are considered in the analysis.

Shaking table test on soil-structure interaction system (2) : Superstructure with foundation on layered soil (건물-지반 시스템에 관한 진동대실험 (2) : 성층지반위의 구조물)

  • Lee Sung-Kyung;Masato Motosaka;Min Kyung-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.529-537
    • /
    • 2005
  • This paper proposes the shaking table testing method, without any soil specimen only using building model as an experimental part, considering dynamic soil-structure interaction based on the substructure method. The two-layered soil is assumed as a soil model of the entire soil-structure interaction syhstem(SSI) in this paper. Differently from the constant soil stiffness, the frequency-dependent dynamic soil stiffness is approximated for the case of both acceleration and velocity feedback, respectively. The interaction force is observed from measuring the accelerations at superstructure. Using the soil filters corresponding to the approximated dynamic soil stiffness, the shaking table drives the acceleration or velocity, which the needed motion to give the building specimen the SSI effects. Experimental results show the applicability the proposed methodologies to the shaking table test considering dynamic soil-structure interaction.

  • PDF

Lateral seismic response of building frames considering dynamic soil-structure interaction effects

  • RezaTabatabaiefar, S. Hamid;Fatahi, Behzad;Samali, Bijan
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.311-321
    • /
    • 2013
  • In this study, to have a better judgment on the structural performance, the effects of dynamic Soil-Structure Interaction (SSI) on seismic behaviour and lateral structural response of mid-rise moment resisting building frames are studied using Finite Difference Method. Three types of mid-rise structures, including 5, 10, and 15 storey buildings are selected in conjunction with three soil types with the shear wave velocities less than 600m/s, representing soil classes $C_e$, $D_e$ and $E_e$, according to Australian Standard AS 1170.4. The above mentioned frames have been analysed under two different boundary conditions: (i) fixed-base (no soil-structure interaction), and (ii) flexible-base (considering soil-structure interaction). The results of the analyses in terms of structural lateral displacements and drifts for the above mentioned boundary conditions have been compared and discussed. It is concluded that the dynamic soil-structure interaction plays a considerable role in seismic behaviour of mid-rise building frames including substantial increase in the lateral deflections and inter-storey drifts and changing the performance level of the structures from life safe to near collapse or total collapse. Thus, considering soil-structure interaction effects in the seismic design of mid-rise moment resisting building frames, particularly when resting on soft soil deposit, is essential.

Shaking Table Testing Method Considering the Dynamic Soil-Structure Interaction (건물과 지반의 동적상호작용을 고려한 진동대 실험법에 관한 연구)

  • Lee, Sung-Kyung;Lee, Sang-Hyun;Chung, Lang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.184-191
    • /
    • 2010
  • This paper proposes the shaking table testing method for replicating the dynamic behavior of soil-structure interaction (SSI) system, without any physical soil model and only using superstructure model. Applying original SSI system to the substructure method produces two substructures; superstructure and soil model corresponding to experimental and numerical substructures, respectively. Interaction force acting on interface between the two substructures is observed from measuring the accelerations of superstructure, and the interface acceleration or velocity, which is the needed motion for replicating the dynamic behavior of original SSI system, is calculated from the numerical substructure reflecting the dynamic soil stiffness of soil model. Superstructure is excited by the shaking table with the motion of interface acceleration or velocity. Analyzing experimental results in time and frequency domains show the applicability the proposed methodologies to the shaking table test considering dynamic soil-structure interaction.

  • PDF

Dynamic Analysis of Tunnel Structures Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 터널 구조물의 동적 해석)

  • Kim, Hyon-Jung;Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.101-106
    • /
    • 2005
  • When a underground structure is constructed at the site composed of soft soil, the behavior of a underground structure Is much affected by the motion of soft soil. Therefore, the effect of soil-structure interaction is an important consideration in the design of a underground structure such as tunnel at the site composed of soft soil. This paper presents the results of the study on dynamic response of tunnel structures and soil-structure interaction effects. The computer program SASSI was used in seismic analysis of tunnel structures because it is more capable of analyzing dynamic response or structures considering soil-structure interaction. As regards the results, the flexibility of surrounding soil affects dynamic response characteristics of tunnel structures and response of tunnel structures can be amplified.