• Title/Summary/Keyword: soil/structure interaction

Search Result 605, Processing Time 0.025 seconds

Dynamic Analysis of Structure-Fluid-Soil Interaction Problem of a Bridge Subjected to Seismic-Load Using Finite Element Method (유한요소법을 이용한 지진하중을 받는 교량의 구조물-유체-지반 동적 상호작용해석)

  • You, Hee-Yong;Park, Young-Tack;Lee, Jae-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.67-75
    • /
    • 2008
  • In construction facilities such as bridges, the fluid boundary layer(or water film) is formed at the structure-soil interface by the inflow into the system due to rainfall or/and rising ground-water. As a result, the structure-soil interaction(SSI) state changes into the structure-fluid-soil interaction(SFSI) state. In general, construction facilities may be endangered by the inflow of water into the soil foundation. Thus, it is important to predict the dynamic SFSI responses accurately so that the facilities may be properly designed against such dangers. It is desired to have the robust tools of attaining such a purpose. However, there has not been any report of a method for the SFSI analyses. The objective of this study is to propose an efficient method of finite element modelling using the new interface element named hybrid interface element capable of giving reasonable predictions of the dynamic SFSI response. This element enables the simulation of the limited normal tensile resistance and the tangential hydro-plane behaviour, which has not been preceded in the previous studies. The hybrid interface element was tested numerically for its validity and employed in the analysis of SFSI responses of the continuous bridge subjected to seismic load under rainfall or/and rising ground-water condition. It showed that dynamic responses of the continuous bridge resting on direct foundation may be amplified under rainfall condition and consequently lead to significant variation of stresses.

Different approaches for numerical modeling of seismic soil-structure interaction: impacts on the seismic response of a simplified reinforced concrete integral bridge

  • Dhar, Sreya;Ozcebe, Ali Guney;Dasgupta, Kaustubh;Petrini, Lorenza;Paolucci, Roberto
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.373-385
    • /
    • 2019
  • In this article, different frequently adopted modeling aspects of linear and nonlinear dynamic soil-structure interaction (SSI) are studied on a pile-supported integral abutment bridge structure using the open-source platform OpenSees (McKenna et al. 2000, Mazzoni et al. 2007, McKenna and Fenves 2008) for a 2D domain. Analyzed approaches are as follows: (i) free field input at the base of fixed base bridge; (ii) SSI input at the base of fixed base bridge; (iii) SSI model with two dimensional quadrilateral soil elements interacting with bridge and incident input motion propagating upwards at model bottom boundary (with and without considering the effect of abutment backfill response); (iv) simplified SSI model by idealizing the interaction between structural and soil elements through nonlinear springs (with and without considering the effect of abutment backfill response). Salient conclusions of this paper include: (i) free-field motions may differ significantly from those computed at the base of the bridge foundations, thus put a significant bias on the inertial component of SSI; (ii) conventional modeling of SSI through series of soil springs and dashpot system seems to stay on the safer side under dynamic conditions when one considers the seismic actions on the structure by considering a fully coupled SSI model; (iii) consideration of abutment-backfill in the SSI model positively affects the general response of the bridge, as a result of large passive resistance that may develop behind the abutments.

A polynomial mathematical tool for foundation-soil-foundation interaction

  • Sbartai, Badreddine
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.547-560
    • /
    • 2020
  • This paper studies the dynamic foundation-soil-foundation interaction for two square rigid foundations embedded in a viscoelastic soil layer. The vibrations come from only one rigid foundation placed in the soil layer and subjected to harmonic loads of translation, rocking, and torsion. The required dynamic response of rigid surface foundations constitutes the solution of the wave equations obtained by taking account of the conditions of interaction. The solution is formulated using the frequency domain Boundary Element Method (BEM) in conjunction with the Kausel-Peek Green's function for a layered stratum, with the aid of the Thin Layer Method (TLM), to study the dynamic interaction between adjacent foundations. This approach allows the establishment of a mathematical model that enables us to determine the dynamic displacements amplitude of adjacent foundations according to their different separations, the depth of the substratum, foundations masss, foundations embedded, and the frequencies of excitation. This paper attempts to introduce an approach based on a polynomial mathematical tool conducted from several results of numerical methods (BEM-TLM) so that practicing civil engineers can evaluation the dynamic foundations displacements more easy.

Seismic Analysis of Underground RC Structures considering Interface between Structure and Soil (경계면 요소를 고려한 지하 철근콘크리트 구조물의 지진해석)

  • 남상혁;변근주;송하원;박성민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.87-92
    • /
    • 2000
  • The real situation of an underground reinforced concrete(RC) structure with the surrounding soil medium subjected to seismic load is quite difficult to be simulated through an expensive work and, even if it is possible to arrange such an experiment, it will be too expensive. So development of analytical method can be applied usefully to seismic design and seismic retrofit through an analysis of seismic behavior and seismic performance evaluation. A path-dependent constitutive model for soil that can estimate the response of soil layer is indispensible for dealing with kinematic interaction of RC/soil entire system under seismic loads. And interface model which deals with the dynamic interaction of RC/soil entire system is also necessary. In this study, finite element analysis program that can consider path-dependent behavior of RC and soil, and interfacial behavior between RC and soil is developed for rational seismic analysis of RC/soil entire system. Using this program, nonlinear behavior of interface between RC and soil is analyzed, and the effect of interfacial behavior to entire system is investigated.

  • PDF

The Behavior of Adjacent Structures in Urban Excavation Considering Soil-Structure Interaction (지반굴착시 지반/구조물 상호작용이 고려된 구조물의 거동 평가 연구)

  • Yang, Sung-Woo;Kim, Chan-Kuk;Hwang, Eui-Seok;Kim, Zu-Cheol;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1024-1031
    • /
    • 2006
  • In this study using the finite different programs, FLAC2D to define affection of the soil-structure interface in evaluating the behavior of adjacent structures according to excavation, and tried to compare each the results of different 46 cases which were various condition of stories, length and locations from the excavation site. In the result of the numerical analysis, the affection of the interface was affected by the building stories, locations from the excavation site and shape ratio(length/height). Therefore, in the considering soil-structure interaction in the damage assessment and the behavior of the adjacent structures when excavation, is important in more accurate evaluation of the movement of structure. Also, the interface modification factor were proposed which can consider the interface.

  • PDF

Building frame-pile foundation-soil interactive analysis

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.397-411
    • /
    • 2009
  • The effect of soil-structure interaction on a simple single storeyed and two bay space frame resting on a pile group embedded in the cohesive soil (clay) with flexible cap is examined in this paper. For this purpose, a more rational approach is resorted to using the three dimensional finite element analysis with realistic assumptions. The members of the superstructure and substructure are descretized using 20 node isoparametric continuum elements while the interface between the soil and pile is modeled using 16 node isoparametric interface elements. Owing to viability in terms of computational resources and memory requirement, the approach of uncoupled analysis is generally preferred to coupled analysis of the system. However, an interactive analysis of the system is presented in this paper where the building frame and pile foundation are considered as a single compatible unit. This study is focused on the interaction between the pile cap and underlying soil. In the parametric study conducted using the coupled analysis, the effect of pile spacing in a pile group and configuration of the pile group is evaluated on the response of superstructure. The responses of the superstructure considered include the displacement at top of the frame and moments in the superstructure columns. The effect of soil-structure interaction is found to be quite significant for the type of foundation used in the study. The percentage variation in the values of displacement obtained using the coupled and uncoupled analysis is found in the range of 4-17 and that for the moment in the range of 3-10. A reasonable agreement is observed in the results obtained using either approach.

Foundation-soil-foundation Interaction of Shallow Foundations Using Geo Centrifuge: Experimental Approach (원심모형실험을 이용한 얕은 기초의 기초-지반-기초 상호작용: 실험적 접근)

  • Ngo, Linh Van;Kim, Jae-Min;Lim, Jaesung;Lee, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.1
    • /
    • pp.25-35
    • /
    • 2018
  • Geocentrifuge tests are performed to investigate the structure-soil-structure interaction of shallow foundations that have various sizes. The soil specimen is prepared by using the air-pluviation, and the dynamic responses of the foundation are monitored with separation distances between the two foundations and the embedment. During the centrifugal test, the measured ground acceleration shows a tendency to increase with the increase of the input seismic amplitude, and maximum acceleration is measured at the surface due to the ground amplification. As the separation distance between the two foundations decreases, the ratio of the response spectral acceleration (RRS) increases and the period at the peak RRS decreases due to the structure-soil-structure interaction (SSSI). The RRS of the two foundations tends to decrease when the foundations are buried in the ground at the same separation distance.

The M6.4 Lefkada 2003, Greece, earthquake: dynamic response of a 3-storey R/C structure on soft soil

  • Giarlelis, Christos;Lekka, Despina;Mylonakis, George;Karabalis, Dimitris L.
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.257-277
    • /
    • 2011
  • An evaluation is presented of the response of a 3-storey R/C structure during the destructive Lefkada earthquake of 14/08/2003. Key aspects of the event include: (1) the unusually strong levels of ground motion (PGA = 0.48 g, $SA_{max}$ = 2.2 g) recorded approximately 10 km from fault, in downtown Lefkada; (2) the surprisingly low structural damage in the area; (3) the very soft soil conditions ($V_{s,max}$ = 150 m/s). Structural, geotechnical and seismological aspects of the earthquake are discussed. The study focuses on a 3-storey building, an elongated structure of rectangular plan supported on strip footings, that suffered severe column damage in the longitudinal direction, yet minor damage in the transverse one. Detailed spectral and time-history analyses highlight the interplay of soil, foundation and superstructure in modifying seismic demand in the two orthogonal directions of the building. It is shown that soil-structure interaction may affect inelastic seismic response and alter the dynamic behavior even for relatively flexible systems such as the structure at hand.

The Finite Element Analysis of Foundation Layer by Introducing Interface Element (접합요소를 도입한 기초지반의 유한요소해석)

  • 양극영;이대재
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.9-20
    • /
    • 2002
  • The purpose of this research is to develop computational procedures for studying nonlinear soil-structure interaction Problems. In orders to study soil-structure interaction behavior, the finite element analysis for the strip footing subjected to both vortical and lateral loads, and foundation layer reinforced with sheet pile are considered, interface elements are used between the footing and the soil to model the interaction behavior The main analyzed results are as follows; 1. For the prediction of settlement and lateral displacement, the result due to interface element was evaluated larger then without interface element. 2. For the determination of ultimate bearing capacity, the value using interface element appeared smaller by 12%, which was safe. 3. The horizontal and vertical displacement of strip footing affected by the presence of interface element.

Seismic optimization and performance assessment of special steel moment-resisting frames considering nonlinear soil-structure interaction

  • Saeed Gholizadeh;Arman Milany;Oguzhan Hasancebi
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.339-353
    • /
    • 2023
  • The primary objective of the current study is to optimize and evaluate the seismic performance of steel momentresisting frame (MRF) structures considering soil-structure interaction (SSI) effects. The structural optimization is implemented in the context of performance-based design in accordance with FEMA-350 at different confidence levels from 50% to 90% by taking into account fixed- and flexible-base conditions using an efficient metaheuristic algorithm. Nonlinear response-history analysis (NRHA) is conducted to evaluate the seismic response of structures, and the beam-on-nonlinear Winkler foundation (BNWF) model is used to simulate the soil-foundation interaction under the MRFs. The seismic performance of optimally designed fixed- and flexible-base steel MRFs are compared in terms of overall damage index, seismic collapse safety, and interstory drift ratios at different performance levels. Two illustrative examples of 6- and 12-story steel MRFs are presented. The results show that the consideration of SSI in the optimization process of 6- and 12-story steel MRFs results in an increase of 1.0 to 9.0 % and 0.5 to 5.0 % in structural weight and a slight decrease in structural seismic safety at different confidence levels.