DOI QR코드

DOI QR Code

Foundation-soil-foundation Interaction of Shallow Foundations Using Geo Centrifuge: Experimental Approach

원심모형실험을 이용한 얕은 기초의 기초-지반-기초 상호작용: 실험적 접근

  • Ngo, Linh Van (Dept. of Civil and Environmental Engrg., Chonnam National Univ.) ;
  • Kim, Jae-Min (Dept. of Marine and Civil Engrg., Chonnam National Univ.) ;
  • Lim, Jaesung (Dept. of Civil and Environmental Engrg., Chonnam National Univ.) ;
  • Lee, Changho (Dept. of Marine and Civil Engrg., Chonnam National Univ.)
  • 노린반 (전남대학교 해양토목공학과) ;
  • 김재민 (전남대학교 해양토목공학과) ;
  • 임재성 (전남대학교 해양토목공학과) ;
  • 이창호 (전남대학교 해양토목공학과)
  • Received : 2017.11.15
  • Accepted : 2017.12.19
  • Published : 2018.01.31

Abstract

Geocentrifuge tests are performed to investigate the structure-soil-structure interaction of shallow foundations that have various sizes. The soil specimen is prepared by using the air-pluviation, and the dynamic responses of the foundation are monitored with separation distances between the two foundations and the embedment. During the centrifugal test, the measured ground acceleration shows a tendency to increase with the increase of the input seismic amplitude, and maximum acceleration is measured at the surface due to the ground amplification. As the separation distance between the two foundations decreases, the ratio of the response spectral acceleration (RRS) increases and the period at the peak RRS decreases due to the structure-soil-structure interaction (SSSI). The RRS of the two foundations tends to decrease when the foundations are buried in the ground at the same separation distance.

구조물-지반-구조물 상호작용을 확인하기 위하여 다양한 크기를 가지는 얕은 기초에 대하여 원심모형실험에 의한 진동대실험을 실시하고 결과를 분석하였다. 낙사법을 이용하여 지반을 조성하였으며, 두 기초의 이격 거리 및 매립에 따른 거동을 평가하였다. 원심모형실험 시 측정된 깊이별 지반 가속도는 입력 지진파의 크기가 증가함에 따라 증가하는 경향을 보였으며, 증폭 현상에 의하여 지표면에서 가장 큰 값을 보였다. 두 기초의 이격 거리가 줄어듦에 따라 구조물-지반-구조물 상호작용에 의하여 가속도 응답 스펙트럼 비(RRS)의 크기는 커지며, RRS 값이 최대가 되는 주기는 줄어 들었다. 동일한 이격 거리에서 기초가 지반에 매립될 경우, 두 기초의 RRS는 감소하는 경향을 보였다.

Keywords

References

  1. ASTM-D854 (2014), "Standard Test Methods for Specific Gravity of Soils by Water Pycnometer", Annual Book of ASTM Standards, ASTM.
  2. ASTM-D4253 (2006), "Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table", Annual Book of ASTM Standards, ASTM.
  3. ASTM-D4254 (2006), "Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density", Annual Book of ASTM Standards, ASTM.
  4. Aviles, J. and Suarez, M. (2002), "Effective Periods and Dampings of Building-foundation Systems Including Seismic Wave Effects", Engineering Structures, Vol.24, No.5, pp.553-562. https://doi.org/10.1016/S0141-0296(01)00121-3
  5. Chopra, A. K. (2007), Dynamics of structures, Prentice Hall, Upper Saddle River, NJ.
  6. Clouteau, D. and Aubry, D. (2001), "Modifications of the Ground Motion in Dense Urban Areas", Journal of Computational Acoustics, Vol.9, No.4, pp.1659-1675. https://doi.org/10.1142/S0218396X01001509
  7. Gazetas, G. (1983), "Analysis of Machine Foundation Vibrations: State of the Art", International Journal of Soil Dynamics and Earthquake Engineering, Vol.2, No.1, pp.2-42. https://doi.org/10.1016/0261-7277(83)90025-6
  8. Ha, J. G., Lee, S.-H., Kim, D.-S., and Choo, Y. W. (2014), "Simulation of Soil-foundation-structure Interaction of Hualien Largescale Seismic Test Using Dynamic Centrifuge Test", Soil Dynamics and Earthquake Engineering, 61, pp.176-187.
  9. Iai, S., Tobita, T., and Nakahara, T. (2005), "Generalised Scaling Relations for Dynamic Centrifuge Tests", Geotechnique, Vol.55, No.5, pp.355-362. https://doi.org/10.1680/geot.2005.55.5.355
  10. Jaky, J. (1944), "The Coefficient of Earth Pressure at Rest", J. for Society of Hungarian Architects and Engineers, Vol.78, No.22, pp.355-358.
  11. Kim, D.-S., Kim, N.-R., Choo, Y. W., and Cho, G.-C. (2013), "A Newly Developed State-of-the-art Geotechnical Centrifuge in Korea", KSCE Journal of Civil Engineering, pp.1-8.
  12. Kong, S.-M., Jung, H.-S., and Lee, Y.-J. (2017), "Investigation of Ground behaviour Adjacent to an Embedded Pile According to Various Tunnel Volume Losses", International Journal of Geo-Engineering, Vol.8, No.1, p.5. https://doi.org/10.1186/s40703-017-0043-1
  13. Kramer, S. L. (1996), Geotechnical Earthquake Engineering, Premtice Hall, NJ.
  14. Lee, T. and Wesley, D. (1973), "Soil-structure Interaction of Nuclear Reactor Structures Considering Through-soil Coupling between Adjacent Structures", Nuclear Engineering and Design, Vol.24, No.3, pp. 374-387. https://doi.org/10.1016/0029-5493(73)90007-1
  15. Mason, H., Trombetta, N., Chen, Z., Bray, J., Hutchinson, T., and Kutter, B. (2013), "Seismic Soil-foundation-structure Interaction Observed in Geotechnical Centrifuge Experiments", Soil Dynamics and Earthquake Engineering, 48, pp.162-174. https://doi.org/10.1016/j.soildyn.2013.01.014
  16. Michalowski, R. L. (2005), "Coefficient of Earth Pressure at Rest", Journal of geotechnical and geoenvironmental engineering, Vol.131, No.11, pp.1429-1433. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1429)
  17. Newmark, N. M. and Hall, W. J. (1973), "Procedures and Criteria for Earthquake-resistant Design", Proc., Selected Papers By Nathan M. Newmark: Civil Engineering Classics, ASCE, pp.829-872.
  18. Parmelee, R. A. (1967), "Building-foundation Interaction Effects", Journal of the Engineering Mechanics Division, Vol.93, No.2, pp. 131-152.
  19. Sarrazin, M. A., Roesset, J. M., and Whitman, R. V. (1972), "Dynamic Soil-structure Interaction", Journal of the Structural Division, 98 (st 7).
  20. Schnabel, P. B., Lysmer, J., and Seed, H. B. (1972), "SHAKE- A Computer Program for Earthquake Response Analysis of Horizontal Layered Sites".
  21. Todorovska, M. (1992), "Effects of the Depth of the Embedment on the System Response During Building-soil Interaction", Soil Dynamics and Earthquake Engineering, Vol.11, No.2, pp.111-123. https://doi.org/10.1016/0267-7261(92)90049-J
  22. Trombetta, N. W., Mason, H. B., Hutchinson, T. C., Zupan, J. D., Bray, J. D., and Kutter, B. L. (2013), "Nonlinear Soil-foundation-structure and Structure-soil-structure Interaction: Centrifuge Test Observations", Journal of Geotechnical and Geoenvironmental Engineering, Vol.140, No.5, 04013057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001074
  23. Tsogka, C. and Wirgin, A. (2003), "Simulation of Seismic Response in an Idealized City", Soil Dynamics and Earthquake Engineering, Vol.23, No.5, pp.391-402. https://doi.org/10.1016/S0267-7261(03)00017-4
  24. U.S. Nuclear Regulatory Commission (2012), "Standard Review Plan", 3.7.1 Seismic Design Parameters, U.S. NRC.
  25. Wolf, J. P. (1985), Dynamic Soil-Structure Interaction, Prentice-Hall.
  26. Zhang, C. and Wolf, J. P. (1998), Dynamic soil-structure interaction: current research in China and Switzerland, Elsevier.