• 제목/요약/키워드: soil/geosynthetic interfaces

검색결과 7건 처리시간 0.012초

An investigation into the effects of lime-stabilization on soil-geosynthetic interface behavior

  • Khadije Mahmoodi;Nazanin Mahbubi Motlagh;Ahmad-Reza Mahboubi Ardakani
    • Geomechanics and Engineering
    • /
    • 제38권3호
    • /
    • pp.231-247
    • /
    • 2024
  • The use of lime stabilization and geosynthetic reinforcement is a common approach to improve the performance of fine-grained soils in geotechnical applications. However, the impact of this combination on the soil-geosynthetic interaction remains unclear. This study addresses this gap by evaluating the interface efficiency and soil-geosynthetic interaction parameters of lime-stabilized clay (2%, 4%, 6%, and 8% lime content) reinforced with geotextile or geogrid using direct shear tests at various curing times (1, 7, 14, and 28 days). Additionally, machine learning algorithms (Support Vector Machine and Artificial Neural Network) were employed to predict soil shear strength. Findings revealed that lime stabilization significantly increased soil shear strength and interaction parameters, particularly at the optimal lime content (4%). Notably, stabilization improved the performance of soil-geogrid interfaces but had an adverse effect on soil-geotextile interfaces. Furthermore, machine learning algorithms effectively predicted soil shear strength, with sensitivity analysis highlighting lime percentage and geosynthetic type as the most significant influencing factors.

쓰레기의 공학적 특성과 토목섬유재간의 마찰 특성에 관한 연구 (Geotechnical Characterization of Waste and Frictional Properties of Geosynthetics Interface)

  • 임학수;장연수;최정원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.621-628
    • /
    • 2003
  • To prevent the percolation of leachate through the bottom of waste landfills, the liner system of various layers, such as compacted clay, geomembrane, geonet, geotextiles, and geocomposite is designed. Since the friction angle between a geomembrane and other geosynthetics is usually lower than that of the soil alone, the interfaces between soil and geosynthetic or geosynthetic-geosynthetic may become a possible plane of weakness, which leads to potential instability of the system under load of waste at side slopes. In this study, large triaxial tests are carried out with samples of remoulded wastes and direct shear interface friction tests are carried out to understand the frictional properties of geosynthetic-geosynthetic interfaces, which are required for analyzing the safety of side-slope liner systems.

  • PDF

Sand-Nonwoven geotextile interfaces shear strength by direct shear and simple shear tests

  • Vieira, Castorina Silva;Lopes, Maria de Lurdes;Caldeira, Laura
    • Geomechanics and Engineering
    • /
    • 제9권5호
    • /
    • pp.601-618
    • /
    • 2015
  • Soil-reinforcement interaction mechanism is an important issue in the design of geosynthetic reinforced soil structures. This mechanism depends on the soil properties, reinforcement characteristics and interaction between these two elements (soil and reinforcement). In this work the shear strength of sand/geotextile interfaces were characterized through direct and simple shear tests. The direct shear tests were performed on a conventional direct shear device and on a large scale direct shear apparatus. Unreinforced sand and one layer reinforced sand specimens were characterized trough simple shear tests. The interfaces shear strength achieved with the large scale direct shear device were slightly larger than those obtained with the conventional direct shear apparatus. Notwithstanding the differences between the shear strength characterization through simple shear and direct shear tests, it was concluded that the shear strength of one layer reinforced sand is similar to the sand/geotextile interface direct shear strength.

진동대를 이용한 Geomembrane-Geotextile 사이의 동적 접촉마찰특성 평가

  • 김동진;서민우;박준범
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.179-182
    • /
    • 2002
  • Geosynthetics are widely used in landfill for filtration, drainage, separation and so on. For many landfill failure cases, interfaces of geosynthetics can be potential failure surfaces. Therefore, it is very Important to estimate the interface properties of geosynthetics. In this study, shaking table tests were peformed between smooth geomembrane and geotextile. From the test results, it was found that there is a limited acceleration that can be transmitted from smooth geomembrane to geotextile. And the influence of normal stress and frequencies of excitation were discussed.

  • PDF

경사판 시험을 통한 토목섬유와 흙의 접촉 전단 특성 평가 (Evaluation of Interface Shear Properties Between Geosynthetics and Soils Through Inclined Board Tests)

  • 서민우;신준수;박준범;박인준
    • 한국지반공학회논문집
    • /
    • 제19권6호
    • /
    • pp.285-298
    • /
    • 2003
  • 본 연구에서는 경사판 시험기를 이용하여 매립지에 흔히 나타나는 토목섬유/토목섬유, 토목섬유/모래의 접촉 마찰특성을 평가하였다. 경사판 시험기는 연직응력이 낮은 상태에서의 전단 거동을 정확히 모사하는 시험기로 널리 알려져 있으며, 본 연구에서는 이 시험기를 이용하여 각 접촉면의 마찰각을 평가하는 동시에, 각 토목섬유에 유발되는 인장력도 측정하였다. 실험 결과, 연직응력의 크기, 토목섬유의 종류, 토목섬유의 흙의 구성에 따라 접촉면의 마찰각과 토목섬유에 유발되는 인장력이 각각 다르게 측정됨을 확인하였다. 한편, 본 연구에서는 모래/지오텍스타일/지오멤브레인, 즉 두개의 접촉면을 동시에 모사하는 실험을 실시하여, 지오멤브레인 상부에 위치하는 지오텍스타일로 인해 지오멤브레인에 유발되는 인장력이 감소함을 관찰하였다. 본 연구 결과는 동일한 접촉면을 대상으로 실시된 직접전단 시험 결과와 비교하였으며, 마지막으로 상자의 변위가 발생하기 시작하는 시점, 즉 각 접촉면의 한계 경사에서 토목섬유에 유발되는 인장력을 기존에 제안된 해석해와 비교하여, 해석해의 정확도와 설계시 적용 가능성에 대하여 고찰하였다.

효율관점에서 흙/토목섬유 접촉면에서의 마찰특성 (Friction Behavior at the Soil/Geosynthetic Interface in Respect of Efficiency)

  • 안현호;심성현;심재범;이석원
    • 한국지반공학회논문집
    • /
    • 제23권10호
    • /
    • pp.65-72
    • /
    • 2007
  • 본 연구에서는 효율의 관점에서 흙 자체의 전단강도 및 흙/토목섬유 상호간의 접촉면 마찰특성을 조사하기 위하여 대형직접전단시험을 수행하였다. 모래와 쇄석, 3종류의 지오텍스타일(즉, 2종류의 부직포와 1종류의 직포)을 시험에 사용하였다. 접촉면에서의 전단강도를 산정하는데 고려한 접촉면은 모래/모래, 쇄석/쇄석, 모래/직포, 쇄석/직포, 쇄석/부직포-A 그리고 쇄석/부직포-B 등이다. 연구결과, 모래/직포의 접촉면에서는 모래자체의 전단강도(즉, 모래/모래 접촉면)와 비교하여 84%의 효율을 얻었다. 쇄석/부직포-A, 쇄석/부직포-B, 쇄석/직포의 접촉면에서는 쇄석자체의 전단강도(즉, 쇄석/쇄석 접촉면)와 비교하여 각각 74%, 83%, 72%의 효율을 얻었다.

Finite element analysis of a CFRP reinforced retaining wall

  • Ouria, Ahad;Toufigh, Vahab;Desai, Chandrakant;Toufigh, Vahid;Saadatmanesh, Hamid
    • Geomechanics and Engineering
    • /
    • 제10권6호
    • /
    • pp.757-774
    • /
    • 2016
  • Soils are usually weak in tension therefore different materials such as geosynthetics are used to address this inadequacy. Worldwide annual consumption of geosynthetics is close to $1000million\;m^2$, and the value of these materials is probably close to US$1500 million. Since the total cost of the construction is at least four or five times the cost of the geosynthetic itself, the impact of these materials on civil engineering construction is very large indeed. Nevertheless, there are several significant problems associated with geosynthetics, such as creep, low modulus of elasticity, and susceptibility to aggressive environment. Carbon fiber reinforced polymer (CFRP) was introduced over two decades ago in the field of structural engineering that can also be used in geotechnical engineering. CFRP has all the benefits associated with geosynthetics and it boasts higher strength, higher modulus, no significant creep and reliability in aggressive environments. In this paper, the performance of a CFRP reinforced retaining wall is investigated using the finite element method. Since the characterization of behavior of soils and interfaces are vital for reliable prediction from the numerical model, soil and interface properties are obtained from comprehensive laboratory tests. Based on the laboratory results for CFRP, backfill soil, and interface data, the finite element model is used to study the behavior of a CFRP reinforced wall. The finite element model was verified based on the results of filed measurements for a reference wall. Then the reference wall simulated by CFRP reinforcements and the results. The results of this investigations showed that the safety factor of CFRP reinforced wall is more and its deformations is less than those for a retaining wall reinforced with ordinary geosynthetics while their construction costs are in similar range.