• Title/Summary/Keyword: software engineering

Search Result 12,330, Processing Time 0.037 seconds

Distracted Driver Detection and Characteristic Area Localization by Combining CAM-Based Hierarchical and Horizontal Classification Models (CAM 기반의 계층적 및 수평적 분류 모델을 결합한 운전자 부주의 검출 및 특징 영역 지역화)

  • Go, Sooyeon;Choi, Yeongwoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.439-448
    • /
    • 2021
  • Driver negligence accounts for the largest proportion of the causes of traffic accidents, and research to detect them is continuously being conducted. This paper proposes a method to accurately detect a distracted driver and localize the most characteristic parts of the driver. The proposed method hierarchically constructs a CNN basic model that classifies 10 classes based on CAM in order to detect driver distration and 4 subclass models for detailed classification of classes having a confusing or common feature area in this model. The classification result output from each model can be considered as a new feature indicating the degree of matching with the CNN feature maps, and the accuracy of classification is improved by horizontally combining and learning them. In addition, by combining the heat map results reflecting the classification results of the basic and detailed classification models, the characteristic areas of attention in the image are found. The proposed method obtained an accuracy of 95.14% in an experiment using the State Farm data set, which is 2.94% higher than the 92.2%, which is the highest accuracy among the results using this data set. Also, it was confirmed by the experiment that more meaningful and accurate attention areas were found than the results of the attention area found when only the basic model was used.

SAAnnot-C3Pap: Ground Truth Collection Technique of Playing Posture Using Semi Automatic Annotation Method (SAAnnot-C3Pap: 반자동 주석화 방법을 적용한 연주 자세의 그라운드 트루스 수집 기법)

  • Park, So-Hyun;Kim, Seo-Yeon;Park, Young-Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.10
    • /
    • pp.409-418
    • /
    • 2022
  • In this paper, we propose SAAnnot-C3Pap, a semi-automatic annotation method for obtaining ground truth of a player's posture. In order to obtain ground truth about the two-dimensional joint position in the existing music domain, openpose, a two-dimensional posture estimation method, was used or manually labeled. However, automatic annotation methods such as the existing openpose have the disadvantages of showing inaccurate results even though they are fast. Therefore, this paper proposes SAAnnot-C3Pap, a semi-automated annotation method that is a compromise between the two. The proposed approach consists of three main steps: extracting postures using openpose, correcting the parts with errors among the extracted parts using supervisely, and then analyzing the results of openpose and supervisely. Perform the synchronization process. Through the proposed method, it was possible to correct the incorrect 2D joint position detection result that occurred in the openpose, solve the problem of detecting two or more people, and obtain the ground truth in the playing posture. In the experiment, we compare and analyze the results of the semi-automated annotation method openpose and the SAAnnot-C3Pap proposed in this paper. As a result of comparison, the proposed method showed improvement of posture information incorrectly collected through openpose.

Evaluation of Human Demonstration Augmented Deep Reinforcement Learning Policies via Object Manipulation with an Anthropomorphic Robot Hand (휴먼형 로봇 손의 사물 조작 수행을 이용한 사람 데모 결합 강화학습 정책 성능 평가)

  • Park, Na Hyeon;Oh, Ji Heon;Ryu, Ga Hyun;Lopez, Patricio Rivera;Anazco, Edwin Valarezo;Kim, Tae Seong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.5
    • /
    • pp.179-186
    • /
    • 2021
  • Manipulation of complex objects with an anthropomorphic robot hand like a human hand is a challenge in the human-centric environment. In order to train the anthropomorphic robot hand which has a high degree of freedom (DoF), human demonstration augmented deep reinforcement learning policy optimization methods have been proposed. In this work, we first demonstrate augmentation of human demonstration in deep reinforcement learning (DRL) is effective for object manipulation by comparing the performance of the augmentation-free Natural Policy Gradient (NPG) and Demonstration Augmented NPG (DA-NPG). Then three DRL policy optimization methods, namely NPG, Trust Region Policy Optimization (TRPO), and Proximal Policy Optimization (PPO), have been evaluated with DA (i.e., DA-NPG, DA-TRPO, and DA-PPO) and without DA by manipulating six objects such as apple, banana, bottle, light bulb, camera, and hammer. The results show that DA-NPG achieved the average success rate of 99.33% whereas NPG only achieved 60%. In addition, DA-NPG succeeded grasping all six objects while DA-TRPO and DA-PPO failed to grasp some objects and showed unstable performances.

A Design of the Vehicle Crisis Detection System(VCDS) based on vehicle internal and external data and deep learning (차량 내·외부 데이터 및 딥러닝 기반 차량 위기 감지 시스템 설계)

  • Son, Su-Rak;Jeong, Yi-Na
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.128-133
    • /
    • 2021
  • Currently, autonomous vehicle markets are commercializing a third-level autonomous vehicle, but there is a possibility that an accident may occur even during fully autonomous driving due to stability issues. In fact, autonomous vehicles have recorded 81 accidents. This is because, unlike level 3, autonomous vehicles after level 4 have to judge and respond to emergency situations by themselves. Therefore, this paper proposes a vehicle crisis detection system(VCDS) that collects and stores information outside the vehicle through CNN, and uses the stored information and vehicle sensor data to output the crisis situation of the vehicle as a number between 0 and 1. The VCDS consists of two modules. The vehicle external situation collection module collects surrounding vehicle and pedestrian data using a CNN-based neural network model. The vehicle crisis situation determination module detects a crisis situation in the vehicle by using the output of the vehicle external situation collection module and the vehicle internal sensor data. As a result of the experiment, the average operation time of VESCM was 55ms, R-CNN was 74ms, and CNN was 101ms. In particular, R-CNN shows similar computation time to VESCM when the number of pedestrians is small, but it takes more computation time than VESCM as the number of pedestrians increases. On average, VESCM had 25.68% faster computation time than R-CNN and 45.54% faster than CNN, and the accuracy of all three models did not decrease below 80% and showed high accuracy.

Reinforcing Effect of Buildings Considering Load Distribution Characteristics of a Pre-compressed Micropile (선압축 보강마이크로파일의 하중분담 특성을 고려한 건물 보강효과에 대한 연구)

  • Lee, Kwang Hoon;Park, Yong Chan;Moon, Sung Jin;You, Kwang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.825-836
    • /
    • 2022
  • Micropiles can be used to support additional load in extended building structures. However, their use brings about a risk of exceeding the bearing capacity of existing piles. In this study, pre-compression was applied to distribute the load of an existing building to micropiles, and an indoor loading test was performed to confirm the structural applicability of a wedge-type anchorage device designed to improve its capacity. According to the test results, the maximum strain of the anchorage device was 0.63 times that of the yield strain, and the amount of slip generated at the time of anchorage was 0.11 mm, satisfying structural standards. In addition, using MIDAS GTS, a geotechnical finite element analysis software, the effect of the size of the pre-compression, the thickness of the soil layer, and the ground conditions around the tip on the reaction force of the existing piles and micropiles were analyzed. From the numerical analysis, as the size of the pre-compression load increased, the reaction force of the existing pile decreased, resulting in a reduction rate of up to 36 %. In addition, as the soil layer increased by 5 m, the reduction rate decreased by 4 %, and when the ground condition at the tip of the micropile was weathered rock, the reduction rate increased by 14 % compared with that of weathered soil.

A Mobility Service for the Transportation Vulnerable Based on MyData (마이데이터 기반 교통약자 이동지원서비스 모델)

  • Choi, Hee Seok;Lee, Seok Hyoung;Park, Moon Soo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.1
    • /
    • pp.31-40
    • /
    • 2023
  • Various policies and services are being implemented in Korea and other countries, such as the expansion of convenience facilities for mobility support, the provision of special means of transportation, and the establishment of public transportation route plans and fare policies based on data and AI-based movement pattern analysis to ensure the mobility rights of the weak in transportation. However, A research is still needed to improve service convenience in order to more conveniently use the desired means of transportation in a necessary situation from the viewpoint of the transportation vulnerable. This study examines the policies and services for the promotion of mobility for the transportation disadvantaged, and presents a MyData-based service model for mobility support for the transportation disadvantaged. In the proposed service model, the transportation-disabled person can freely choose and use the means of transportation according to individual circumstances, and receive the same transportation welfare voucher benefits provided by the state or government. The proposed service model defines the MyData platform that supports the safe collection and use of personal data, the authentication of traffic welfare recipients based on MyData, and the payment function for fee settlement after using the service as key components. In this research, the service satisfaction from the user's point of view was investigated by implementing the proposed service model and providing a demonstration service for the transportation vulnerable in Daejeon.

A Thoracic Spine Segmentation Technique for Automatic Extraction of VHS and Cobb Angle from X-ray Images (X-ray 영상에서 VHS와 콥 각도 자동 추출을 위한 흉추 분할 기법)

  • Ye-Eun, Lee;Seung-Hwa, Han;Dong-Gyu, Lee;Ho-Joon, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • In this paper, we propose an organ segmentation technique for the automatic extraction of medical diagnostic indicators from X-ray images. In order to calculate diagnostic indicators of heart disease and spinal disease such as VHS(vertebral heart scale) and Cobb angle, it is necessary to accurately segment the thoracic spine, carina, and heart in a chest X-ray image. A deep neural network model in which the high-resolution representation of the image for each layer and the structure converted into a low-resolution feature map are connected in parallel was adopted. This structure enables the relative position information in the image to be effectively reflected in the segmentation process. It is shown that learning performance can be improved by combining the OCR module, in which pixel information and object information are mutually interacted in a multi-step process, and the channel attention module, which allows each channel of the network to be reflected as different weight values. In addition, a method of augmenting learning data is presented in order to provide robust performance against changes in the position, shape, and size of the subject in the X-ray image. The effectiveness of the proposed theory was evaluated through an experiment using 145 human chest X-ray images and 118 animal X-ray images.

An Improved Skyline Query Scheme for Recommending Real-Time User Preference Data Based on Big Data Preprocessing (빅데이터 전처리 기반의 실시간 사용자 선호 데이터 추천을 위한 개선된 스카이라인 질의 기법)

  • Kim, JiHyun;Kim, Jongwan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.189-196
    • /
    • 2022
  • Skyline query is a scheme for exploring objects that are suitable for user preferences based on multiple attributes of objects. Existing skyline queries return search results as batch processing, but the need for real-time search results has increased with the advent of interactive apps or mobile environments. Online algorithm for Skyline improves the return speed of objects to explore preferred objects in real time. However, the object navigation process requires unnecessary navigation time due to repeated comparative operations. This paper proposes a Pre-processing Online Algorithm for Skyline Query (POA) to eliminate unnecessary search time in Online Algorithm exploration techniques and provide the results of skyline queries in real time. Proposed techniques use the concept of range-limiting to existing Online Algorithm to perform pretreatment and then eliminate repetitive rediscovering regions first. POAs showed improvement in standard distributions, bias distributions, positive correlations, and negative correlations of discrete data sets compared to Online Algorithm. The POAs used in this paper improve navigation performance by minimizing comparison targets for Online Algorithm, which will be a new criterion for rapid service to users in the face of increasing use of mobile devices.

A Study on Tire Surface Defect Detection Method Using Depth Image (깊이 이미지를 이용한 타이어 표면 결함 검출 방법에 관한 연구)

  • Kim, Hyun Suk;Ko, Dong Beom;Lee, Won Gok;Bae, You Suk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.211-220
    • /
    • 2022
  • Recently, research on smart factories triggered by the 4th industrial revolution is being actively conducted. Accordingly, the manufacturing industry is conducting various studies to improve productivity and quality based on deep learning technology with robust performance. This paper is a study on the method of detecting tire surface defects in the visual inspection stage of the tire manufacturing process, and introduces a tire surface defect detection method using a depth image acquired through a 3D camera. The tire surface depth image dealt with in this study has the problem of low contrast caused by the shallow depth of the tire surface and the difference in the reference depth value due to the data acquisition environment. And due to the nature of the manufacturing industry, algorithms with performance that can be processed in real time along with detection performance is required. Therefore, in this paper, we studied a method to normalize the depth image through relatively simple methods so that the tire surface defect detection algorithm does not consist of a complex algorithm pipeline. and conducted a comparative experiment between the general normalization method and the normalization method suggested in this paper using YOLO V3, which could satisfy both detection performance and speed. As a result of the experiment, it is confirmed that the normalization method proposed in this paper improved performance by about 7% based on mAP 0.5, and the method proposed in this paper is effective.

Grasping a Target Object in Clutter with an Anthropomorphic Robot Hand via RGB-D Vision Intelligence, Target Path Planning and Deep Reinforcement Learning (RGB-D 환경인식 시각 지능, 목표 사물 경로 탐색 및 심층 강화학습에 기반한 사람형 로봇손의 목표 사물 파지)

  • Ryu, Ga Hyeon;Oh, Ji-Heon;Jeong, Jin Gyun;Jung, Hwanseok;Lee, Jin Hyuk;Lopez, Patricio Rivera;Kim, Tae-Seong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.9
    • /
    • pp.363-370
    • /
    • 2022
  • Grasping a target object among clutter objects without collision requires machine intelligence. Machine intelligence includes environment recognition, target & obstacle recognition, collision-free path planning, and object grasping intelligence of robot hands. In this work, we implement such system in simulation and hardware to grasp a target object without collision. We use a RGB-D image sensor to recognize the environment and objects. Various path-finding algorithms been implemented and tested to find collision-free paths. Finally for an anthropomorphic robot hand, object grasping intelligence is learned through deep reinforcement learning. In our simulation environment, grasping a target out of five clutter objects, showed an average success rate of 78.8%and a collision rate of 34% without path planning. Whereas our system combined with path planning showed an average success rate of 94% and an average collision rate of 20%. In our hardware environment grasping a target out of three clutter objects showed an average success rate of 30% and a collision rate of 97% without path planning whereas our system combined with path planning showed an average success rate of 90% and an average collision rate of 23%. Our results show that grasping a target object in clutter is feasible with vision intelligence, path planning, and deep RL.