• Title/Summary/Keyword: soft white wheat

Search Result 19, Processing Time 0.025 seconds

Physicochemical Properties and White Layer Cake Making Potentialities of Wheat Flour and Soy Protein Isolate Blends (분리 콩단백 복합분의 이화학적 특성과 white Layer cake 제조적성)

  • Lee, Yong-Suk;Park, Young-Seo;Chang, Hak-Gil
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.534-542
    • /
    • 2006
  • The protein contents of soy protein isolate (SPI) and soft wheat flours were 83.5% and 8.5%, respectively. The addition of SPI increased the protein content but decreased the sedimentation value. Alkaline water retention capacity (AWRC) value increased with SPI addition and was highly correlated with protein content. Increasing SPI flour content significantly decreased the maximum, minimum and final viscosities. Mixograph peak time was positively correlated with protein content and AWRC. The PH and specific gravity of the cake batter increased with increasing SPI content. The SPI addition reduced the loaf and specific loaf volume compared with soft wheat flour. The lightness of the cake crust decreased, while the redness and yellowness increased, with SPI flour addition. SPI addition resulted in a decrease of overall acceptability, but an increase in hardness.

Quality Characteristics of Bread with Added Aloe(Aloe vera Linne) (알로에 첨가 식빵의 품질 특성)

  • Shin, Doo-Ho;Kim, Dong-Won;Jeoung, Young-Nam
    • The Korean Journal of Food And Nutrition
    • /
    • v.20 no.4
    • /
    • pp.399-405
    • /
    • 2007
  • The quality characteristics of breads made by adding levels of 30%, 60%, and 100% aloe gel were investigated. The 60% aloe gel sample had a larger dough volume than the control dough. Also, the loaf volume and specific volume of the bread made with 60% aloe gel were larger than those of the control bread. The pasting temperature increased gradually with the increasing amounts of substituted aloe gel as compared to wheat flour with water added$(66.5{\pm}12^{\circ}C)$; the wheat flour with 100% aloe gel had a pasting temperature of $90.7{\pm}1.1^{\circ}C$. Peak viscosity decreased gradually with increasing amounts of aloe gel when compared to the wheat flour with water added. Setback also was decreased gradually with the increasing amounts of aloe gel as compared to the wheat flour with added water. From the setback decrease it is suggested that the aloe controlled retrogradation of the bread during short-term storage. The crumb color of the bread made with the aloe gel was not significantly different to that of the control bread, and the color of the crumb was yellow-white. Bread hardness decreased gradually with increasing amounts of the substituted aloe gel. However, bread gumminess and chewiness increased gradually with increasing amounts of aloe gel. The springiness of the bread made with 100% aloe gel was lower than that of the control bread. With regard to flavor and taste, the bread made with 100% aloe gel produced a green-like odor and had a bitter taste. The mouth feel of the breads made with aloe gel was considered soft and moist. The overall acceptabilities of the breads made with 30% and 60% aloe gel were not significantly different from the control bread, but the bread made with 100% aloe gel had a green smell and bitter taste. Yet accordingly, the results indicate that functional and health products with improved quality could be developed by adding aloe gel to breads and cakes.

Effect of Chlorine Treatment on the Rheological Properties of Wheat Flour (염소처리가 밀가루의 리올로지 특성에 미치는 영향)

  • Han, Myung-Kyu;Chang, Hak-Gil;Shin, Hyo-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.127-131
    • /
    • 1992
  • The effects of chlorine treatment on the rheological properties (farinogram, extensogram, amylogram) of soft white wheat flour were studied by treating flour with different amounts (1, 2 and 4 ounces per 100 pounds of flour) of liquidized chlorine gas. Departure time, water absorption and dough stability increased while mechanical tolerance index decreased as the level of chlorine increased. It was appeared that extensibility and resistance at chlorine level of 1 to 2 oz was appropriate for baking properties of flour compared to those of untreated wheat flour. The temperature at maximum viscosity increased gradually with increasing levels of chlorine. It was noted that maximum viscosity was greatly increased at 4 oz compared to those of lower levels of chlorine treatment.

  • PDF

Flour Characteristics and End-Use Quality of Korean Wheat Cultivars I. Flour Characteristics (국산밀 품종의 밀가루 특성과 가공적성 I. 밀가루 특성)

  • Kang, Chon-Sik;Park, Chul Soo;Park, Jong-Chul;Kim, Hag-Sin;Cheong, Young-Keun;Kim, Kyung-Ho;Kim, Ki-Jong;Park, Ki-Hoon;Kim, Jung-Gon
    • Korean Journal of Breeding Science
    • /
    • v.42 no.1
    • /
    • pp.61-74
    • /
    • 2010
  • Flour characteristics of 26 Korean wheat cultivars (KWC) were evaluated to assess consumer satisfaction with 6 imported wheat and 5 commercial wheat flours. In physical characteristics of flours, Particle size of SW (soft white) was similar to Dahong, Geuru, Milsung, Olgeuru, Seodun, Tapdong, and Uri. DNS (dark northern spring) was similar to Jeokjoong, Joeun, Sukang, and Younbaek. Ash and damaged starch content of KWC was similar to that of imported wheat and commercial flour (Com), but lightness value ($L^*$) were lower than those of Com. Particle size of flour positively correlated with ash, damaged starch, and lightness value ($L^*$) of flour. L ($^*$) value of flour negatively correlated with ash, damaged starch, and particle size of flour. In protein characteristics, Protein content of SW and commercial flour for baking cookie (Com5) was similar to Baekjoong, Jinpoom, Milsung, Olgeuru, Saeol, and Uri. HRW (hard red winter) and commercial flour for baking bread (Com3) was similar to Hanbaek, Joeun, Jopoom, Keumkang, and Sukang. SDS sedimentation volume based on a constant flour weight (SDSS) of KWC was lower than those of DNS and Com3. Mixograph water absorption of KWC similar to imported wheat and Com. Mixing time and maximum dough height (Hm) of KWC were higher than those of imported wheat and Com. Protein content positively correlated with SDS sedimentation volume and water absorption of mixograph. SDS-sedimentation volume positively correlated with water absorption of mixograph, mixing time of mixograph, and height of dough development. In starch characteristics of flour, ASW (Australian standard white) flours showed lower amylose content, higher peak viscosity, breakdown, and setback in pasting properties than other flours. KWV flours showed higher amylose content and lower peak viscosity than those of AH (Australian hard), ASW, commercial flour for making white salted noodles (Com1), commercial flour for making yellow alkaline noodles (Com2), and Com3.

Cooking Quality of Fresh Pasta with Concentrated Korean Wheat Semolina (우리밀 Semolina 부분 대체에 의한 생면 파스타의 조리특성)

  • Kim, Yeon-Ju;Ju, Jong-Chan;Kim, Rae-Young;Kim, Won-Tae;Park, Jae-Hee;Chun, Soon-Sil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.7
    • /
    • pp.1017-1024
    • /
    • 2011
  • Korean wheat semolina (FS: fine semolina) with similar characteristics to durum wheat semolina was substituted at rates of 0, 10, 20, 30, 40, and 50% in pasta dough and the physical and cooking characteristics were investigated for making optimal pasta. Water absorption of the dough increased with the 10, 20, and 30% substitution ratio of FS. Development times were high with >30% substituted FS. This result positively influenced an increase in production and the preparation of the fresh noodle pasta. Furthermore, soft textured fresh noodles could be made due to the decrease in stability and increased weakness of the >30% substituted FS. The amylograph gelatinization characteristics of Korean wheat semolina exhibited an increase of gelatinization temperature and decrease of maximum viscosity when compared with durum wheat. The handling property of the dough showed more than 4 points in all sample groups. Weight and volume decreased and turbidity and cooking loss increased according to the increasing amount of substituted FS. However, samples with ${\leq}$ 30% FS substitution ratio had similar volumes and cooking losses when compared to the control. The L- and a-values increased and the b-value of color decreased as more FS was added. In a texture analysis, the hardness of the cooking noodles showed a low value with the >30% substituted FS. Springiness, gumminess, and chewiness exhibited a high value. In the results of a sensory evaluation, overall acceptability was high score with more than 7 points for the 30% added FS. The preferences for pasta colors were divided into white, which is similar to the Korean traditional noodle, and yellow, which is similar to durum wheat. Flavor and taste were not affected by substituting with FS. Low hardness and high chewiness was the most preferred noodle. These results suggest that >30% substituted FS was suitable for increasing quality and organoleptic qualities of Korean wheat pasta.

Development of Rice Flour-based Puffing Snack for Early Childhood (쌀가루를 이용한 영유아용 팽화스낵 가공 적성 연구)

  • We, Gyoung Jin;Lee, Inae;Cho, Yong-Sik;Yoon, Mi-Ra;Shin, Malshick;Ko, Sanghoon
    • Food Engineering Progress
    • /
    • v.14 no.4
    • /
    • pp.322-327
    • /
    • 2010
  • Wheat is widely used in food industry because of its low price, convenience, protein-rich resource, easy processibility, and so on. However, people who have wheat-gluten allergy need gluten-free products. Especially, gluten-free products are desirable to early childhood even though they may or may not be sensitive to wheat-gluten. As the alternative of wheat flour, recently, rice flour is gaining popularity. Hence, we developed the puffed rice snack for the baby. In order to prepare for rice extrudate, 1 kg rice flour, 450 g water, and 6 g salt were mixed together and then steamed for 1 hr. The rice extrudate was shredded into pieces (0.5 cm${\times}$0.5 cm) and dried up to 4.5% moisture content. The dried rice shreds were puffed at $257^{\circ}C$ in a puffing machine. The puffed rice snack was oval-shaped having thickness of 0.5 cm, white in color with brown flakes. Appearance and texture of the puffed rice snacks were evaluated by the measurement of the texture, isothermal water absorption, expansion, and the color. Puffed rice was more porous, because rice increased up to about two times larger than its original volume. Texture of the rice puffing snack was suitable for early childhood. Rice puffing snack showed potentials including soft, low-allergenic, and easily digestible properties. It is concluded that rice puffing snack has potential in the food markets for early childhood.

A New White Wheat Variety, "Jeokjoong" with High Yield, Good Noodle Quality and Moderate to Scab (백립계 다수성 붉은곰팡이병 중도저항성 제면용 밀 신품종 "적중밀")

  • Park, Chlul Soo;Heo, Hwa-Young;Kang, Moon-Suk;Lee, Chun-Kee;Park, Kwang-Geun;Park, Jong-Chul;Kim, Hong-Sik;Kim, Hag-Sin;Hwang, Jong-Jin;Cheong, Young-Keun;Kim, Jung-Gon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.308-313
    • /
    • 2008
  • "Jeokjoong", a white winter wheat (Triticum aestivum L.) variety was developed from the cross "Keumkang"/"Tapdong". "Jeokjoong" is an awned, semi-dwarf and soft white winter wheat, similar to "Keumkang" (check variety). The heading and maturing date of "Jeokjoong" were similar to "Keumkang". Culm and spike length of "Jeokjoong" were 78 cm and 7.5 cm, similar to "Keumkang". "Jeokjoong" had lower test weight (800 g) and lower 1,000-grain weight (40.1 g) than "Keumkang" (811 g and 44.0 g, respectively). It had resistance to winter hardiness, wet-soil tolerance and lodging tolerance. "Jeokjoong" showed moderate to scab in test of specific character although "Keumkang" is susceptible to scab. "Jeokjoong" had lower flour yield (69.2%) and ash content (0.36%) than "Keumkang" (72.0% and 0.41%, respectively) and similar flour color to "Keumkang". It showed lower protein content (8.9%) and SDS-sedimentation volume (36.8 ml) and shorter mixograph mixing time (3.5 min) than "Keumkang" (11.0%, 59.7 ml and 4.5 min, respectively). Amylose content and pasting properties of "Jeokjoong" were similar to "Keumkang". "Jeokjoong" had softer and more elastic texture of cooked noodles than "Keumkang". Average yield of "Jeokjoong" in the regional adaptation yield trial was 6.19 MT ha-1 in upland and 5.33 MT/ha in paddy field, which was 19% and 16% higher than those of "Keumkang" (5.21 MT/ha and 4.58 MT/ha, respectively). "Jeokjoong" would be suitable for the area above the daily minimum temperature of $-10^{\circ}C$ in January in Korean peninsula.

A New White Wheat Variety, "Baegjoong" with High Yield, Good Noodle Quality and Moderate to Pre-harvest Sprouting (백립계 다수성 수발아 중도저항성 제면용 밀 신품종 "백중밀")

  • Park, Chul Soo;Heo, Hwa-Young;Kang, Moon-Suk;Lee, Chun-Kee;Park, Kwang-Geun;Park, Jong-Chul;Kim, Hong-Sik;Kim, Hag-Sin;Hwang, Jong-Jin;Cheong, Young-Keun;Kim, Jung-Gon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.153-158
    • /
    • 2008
  • "Baegjoong", a white winter wheat (Triticum aestivum L.) cultivar was developed by the National Institute of Crop Science, RDA. It was derived from the cross "Keumkang"/"Olgeuru" during 1996. "Baegjoong" was evaluated as "Iksan307" in Advanced Yield Trial Test in 2004. It was tested in the regional yield trial test between 2005 and 2007. "Baegjoong" is an awned, semi-dwarf and soft white winter wheat, similar to "Keumkang" (check cultivar). The heading and maturing date of "Baegjoong" were similar to "Keumkang". Culm and spike length of "Baegjoong" were 77 cm and 7.5 cm, similar to "Keumkang". "Baegjoong" had lower test weight (802 g) and lower 1,000-grain weight (39.8 g) than "Keumkang" (811 g and 44.0 g, respectively). It had resistance to winter hardiness, wet-soil tolerance and lodging tolerance. "Baegjoong" showed moderate to pre-harvest sprouting (23.9%) although "Keumkang" is susceptible to pre-harvest sprouting (38.9%). "Baegjoong" had similar flour yield (72.4%) and ash content (0.41%) to "Keumkang" (72.0% and 0.41%, respectively) and similar flour color to "Keumkang". It showed lower protein content (8.8%) and SDS-sedimentation volume (35.3 ml) and shorter mixograph mixing time (3.8 min) than "Keumkang" (11.0%, 59.7 ml and 4.5 min, respectively). Amylose content and pasting properties of "Baegjoong" were similar to "Keumkang". "Baegjoong" had softer and more elastic texture of cooked noodles than "Keumkang". Average yield of "Baegjoong" in the regional adaptation yield trial was $5.88\;MT\;ha^{-1}$ in upland and 5.35 MT ha-1 in paddy field, which was 13% and 17% higher than those of "Keumkang" ($5.21\;MT\;ha^{-1}$ and $4.58\;MT\;ha^{-1}$, respectively). "Baegjoong" would be suitable for the area above the daily minimum temperature of $-10^{\circ}C$ in January in Korean peninsula.

Evaluation of Dietary Protein Sources for Abalone (Haliotis discus hannai) (참전복 사료의 단백질원 평가)

  • 이상민;윤성종;허성범
    • Journal of Aquaculture
    • /
    • v.11 no.1
    • /
    • pp.19-29
    • /
    • 1998
  • An 18-week growth trial was conducted in flow-through aquarium system to evaluate the practical dietary protein sources for juvenile abalone (Haliotis discus hannai). Three replicate groups of the abalone averaging 0.11g were fed one of ten diets containing casein, white fish meal (WFM), meat meal (MM), feather meal (FM), blood meal (BM), soybean meal (SM), corn gluten meal (CGM), cotton seed meal (CSM), Undaria powder (UP), or wheat flour (WF) as a dietary protein source. In addition, these dietary protein sources were cmpared with algae such as raw Undaria or dried Laminaria. Weight gain of abalone fed the diets containing casein, WFM, SM, CSM, or UP was significantly higher (P<0.05) than those of abalone fed other diets, and this value of abalone fed FM, BM, CGM, or algae was lower than other groups. Shell length, shell width, body wt./shell length ratio, and body wt./shell width ratio of abalone fed casein, WFM, SM, CSM, UP, and WF were also highe (P<0.05) than those of other groups. There were no significant difference (P>0.05) in moisture and protein contents of soft body among all diets. The data obtained in this study indicate that each of the casein, WFM, SM, CSM or UP is good dietary protein source for juvenile abalone.

  • PDF