• Title/Summary/Keyword: soft ground improvement

Search Result 338, Processing Time 0.034 seconds

Effect of PBD to improve soft marine sedimentary ground

  • Jeong, Jin-Seob;Hwang, Woong-Ki;Jeong, Choong-Gi;Kim, Tae-Hyung
    • Journal of Navigation and Port Research
    • /
    • v.33 no.2
    • /
    • pp.119-125
    • /
    • 2009
  • The effect of plastic board drains (PBDs)on ground improvement was checked out considering three crucial factors: ground settlement, undrained shear strength, and residual water head. First, the settlement analysis including initial settlement induced by reclamation of sand mat was conducted by back calculation analysis with measured data. Its result showed toot the PBDs used for this site worked well on improving soft ground. Secondly, the undrained shear strength was investigated by laboratory and in-situ tests including unconsolidated-undrained triaxial compression (UU) tests, unconfined compression tests, in-situ vane tests, and cone penetration tests. From the test results, they showed that the undrained shear strength of the improved ground by PBDs was significantly increased as well as the strength increasing ratio especially $10{\sim}15m$ below the ground surface on site. Thirdly, the residual water head measurement from the in situ dissipation test was found the same as the static water head, which indicated primary consolidation was completed and the effect of soil improvement with PBDs can be confirmed.

Optimum PVD installation depth for two-way drainage deposit

  • Chai, J.C.;Miura, N.;Kirekawa, T.;Hino, T.
    • Geomechanics and Engineering
    • /
    • v.1 no.3
    • /
    • pp.179-191
    • /
    • 2009
  • For a two-way drainage deposit under a surcharge load, it is possible to leave a layer adjacent to the bottom drainage boundary without prefabricated vertical drain (PVD) improvement and achieve approximately the same degree of consolidation as a fully penetrated case. This depth is designated as an optimum PVD installation depth. Further, for a two-way drainage deposit under vacuum pressure, if the PVDs are fully penetrated through the deposit, the vacuum pressure will leak through the bottom drainage boundary. In this case, the PVDs have to be partially penetrated, and there is an optimum installation depth. The equations for calculating these optimum installation depths are presented, and the usefulness of the equations is studied by using finite element analysis as well as laboratory model test results.

A Study on Ground Heave Characteristics of Soft Ground with DCM (DCM으로 개량된 연약점토지반의 지반융기에 관한 고찰)

  • You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.75-84
    • /
    • 2020
  • This paper described the analysis result on heaving of soft ground with DCM column type, based on the results of laboratory model tests on the soft ground with DCM column. The heave characteristics of the soft ground were evaluated according to the application of DCM column in soft ground. The results showed that the heaving of soft ground without DCM column occurred rapidly when the lateral deformation of soft ground increased significantly under the 4th load step condition. In addition, the heaving of soft ground in final load step caused tensile failure of the ground surface. The maximum heaving of the soft ground with the DCM column occurred in the final load step, and the heaving quantity decreased in the order of pile, wall, and grid type. Especially, the soft ground with DCM of grid type effectively resisted ground heaving, even if it was extremely failure in the bottom ground of embankment. The results of the maximum heaving according to the measurement point showed that the heaving of the soft ground with DCM of grid type was 3.1% and 1.6% compared to that of the pile and wall type at the location of LVDT-1, and the heaving of the LVDT-2 position was 1.0% and 2.1%, respectively.

The Best Design of the Deep Mixing Method by the rate of substitution (치환율에 따른 심층혼합 처리공법의 최적 설계)

  • Park, Choon-Sik;Lee, Jun-Seok;Jung, Won-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.123-131
    • /
    • 2009
  • The study decided the improvement depth of soft ground of deep mixing method through 2 and 3 dimension finite element method and following results were acquired. 1. 2 dimension analysis shows settlement 10% more estimated than 3 dimension analysis. 2. When the rate of replacement is under 5%, the settlement sharply increased. 3. The most economical design for the levee was decided 3.0m for width direction, 6.0m for length direction and 8.0m for improvement depth. 4. When the soft ground is developed through deep mixing method, the decision of improvement should be decided through 3 dimension analysis than 2 dimension analysis.

  • PDF

A Study on the Effect of Improvement Boundary of Vertical Drain Method by Finite Element Analysis (유한요소해석을 이용한 연직배수재의 타설범위에 따른 개량효과에 관한 연구)

  • Chang, Y.C.;Kim, J.H.;Lee, J.S.
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • Soft foundation is extensively distributed in coastal areas including our local regions. Embankment load on such soft foundation causes displacement due to lack of base ground supports. Long-term consolidation can result in settlement and destruction of shear failure and structure. Therefore, a variety of vertical drain methods are applied to construction sites to prevent base from breaking and changing for secure construction. This study analyzed the patterns of changes displacement to determine efficient range of improvement since range of vertical drain material determines vertical and horizontal changes based on the width range of under ground improvement. Changes of intensity with distance from embankment edge were also analyzed in the field study of embankment slope.

  • PDF

Quality and Measure Controls for Plastic Board Drains Method (PBD공법의 품질 및 계측관리)

  • 박영목
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.133-145
    • /
    • 2001
  • This paper presents quality and measure controls of Plastic Board Drains(PBD) for improvement of soft ground. Laboratory and field tests has been carried out to evaluate the quality of PBD focussing on : discharge capacity of flow area; permeability of filter sleeve; migration of fine particles; deformed shape of PBD; consolidation of clay in the close vicinity of PBD; tensile strength of PBD; long-term consolidation behavior of clay-PBD. Test results show that the quality of PBD is sufficient to perform the improvement of soft silty and clayey ground. But, geotechnical engineer must make efforts minimizings of PBD damage and ground disturbance, continuity of drainage system during construction. Adequate monitoring system should apply at ground focussing on number, location, and accuracy of geotechnical instrumentation, measurement and evaluation of data for ground behaviour.

  • PDF

Characteristics of Ground Improvement by Compaction Grouting System in Filled Ground (매립토층에서 CGS에 의한 지반개량특성에 관한 연구)

  • 천병식;여유현;정영교;정완균;정의원;김우종
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.425-432
    • /
    • 2001
  • Compaction Grouting System, the method which makes ground compact by injection of low slump mortar, Is widely used for reinforcement of soft ground, restoration of structures happened differential settlement, underpinning and restoration of damaged dam core. The quantitive analysis of ground improvement for this method has not performed yet. So, design parameters about thls method must be studied through performance of CGS in various types of soil to make CGS adaptable widely. In this study PBT, SPT and field density test were performed for analysis of the characteristics of ground improvement and pressuremeter and inclinometer were installed for analysis of the characteristics of compaction in adjacent ground. In this paper, denoted much effects for filled ground that increasing of the bearing capacity, confirming the displacement of adjacent ground and the effective radius of injection.

  • PDF

A Study on Design Factors of Geogrid-Encased Stone Column in Soft Ground (연약지반에서 지오그리드 보강 쇄석기둥 공법의 설계 영향인자에 관한 연구)

  • Yoo, Chung-Sik;Song, Ah-Ran;Kim, Sun-Bin;Lee, Dae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.327-334
    • /
    • 2008
  • This paper presents the results of investigation on the influencing factors for GESC(Geogrid-Encased Stone Column) method in soft ground. A parametric study was then conducted on the influencing factors such as replacement ratio, geogrid stiffness and thickness of soft ground using stress-porepressure coupled analysis. The results indicate that the relationship between these parameters and settlement ratio, and the relationship between these parameters and stress concentration factor can be identified.

  • PDF

A Case analysis for Suction Drain method on deep soft ground (대심도 연약지반에 적용한 Suction Drain 공법의 수치해석 사례)

  • Kim, Sung-Ho;Han, Sang-Jae;Ahn, Dong-Wook;Kim, Byung-Il;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1126-1131
    • /
    • 2009
  • Suction Drain Method is soft ground improvement technique, in which a vacuum pressure can be directly applied to the Vertical Drain Board to promote consolidation and strengthening the soft ground. This method does not require a surcharge load, different to embankment or vertical drain method. In this study, Using Suction-CAIN program, which optimize th Suction Drain method, estimate validity Suction Drain method on deep soft ground

  • PDF

On the Counter Plan of Foundation Method being based on N-Value in the Soft-Ground (연약지반에 있어 N치에 의한 기초공법 대책연구)

  • Lee, Y.H.;Lee, D.M.
    • Journal of Korean Port Research
    • /
    • v.10 no.2
    • /
    • pp.69-90
    • /
    • 1996
  • This study is related to save the bearing capacity from using Meyerhof formula namely, static mechanics formula with the S.P.T(N value) of the soft ground and is to choose the soft ground improvement method by the using of total load for the proper method of the pile foundation and then to design the most suitable pile foundation to fit the actual circumstance. The purpose of this study is calculating the diameter of the pile foundation by static mechanics formula and introducing the optimum design condition from the result of the bearing capacity for using N value of the S.P.T obtained from the deep soft ground about the piles such as P.H.C pile, pipe and cast-in-place pile of big diameter, etc. As above-mentioned, it is considered that the use of P.H.C pile or pipe pile is advisable on the synthetical investigation and that the selection of cast-in-place pile method is desirable in terms of the constructive safety and durability.

  • PDF