• Title/Summary/Keyword: soft clay soil

Search Result 369, Processing Time 0.029 seconds

Soil Characteristics on the Fluvial Surface in the Basin of Kyeongan-cheon (Stream) (경안천 유역 하성면에 발달한 토양 특성)

  • Kang, Young-Pork;Sin, Kwang-Sig
    • Journal of the Korean earth science society
    • /
    • v.27 no.5
    • /
    • pp.548-556
    • /
    • 2006
  • The purpose of this study is to clarify the relict landform development of fluvial terrace and the soil characteristics occurring on the fluvial deposits. The physico-chemical properties of soil that are developed on terrace deposits and X-ray diffraction analysis of clay were investigated specifically. The horizon of $A_1$ consists of silt loam with reddish-brown color (5YR4/3). Its soil structures is a weak, fine, subangular, and blocky, breaking to granular. The horizon of $B_{1t}\;and\;B_{2t}$ are silt clay with either a yellowish red (5YR5/6), bright red (2.5YR4/6) color. This soil structure is weak, subangular, and blocky, with thin discontinuous bright red (2.5YR4/6) clay cutans and soft manganese concretions. This red soil structure is made on heavy-textures. It is packed compactly with parent materials of high fluvial surface sediments, and usually has a $A_1-B_{1t}-B_{2t}-C$ profile, from top to bottom. In most cases, clay accumulation in the B-horizon and clay cutans on ped surfaces are observed, which means the argillic horizon has formed. The soils derived from fluvial surface deposits are associated with soils. The soils on the high fluvial surface are considered to be a kind of paleo-red soil which were developed by strong desilicification and rubefaction, and strong leaching of bases under warmer bio-climatic condition during the old Pleistocene period. According to these morphological and anlaytical characteristics,geomorphological features and bio-climatic conditions under which the soil have developed on the high terrace sediment indicate that the soil should be classified as paleo-red soils.

The Relationship between Loading Velocity and Ground Heaving Characteristics (재하속도와 지반융기 특성의 상호관계)

  • Oh, Se-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.77-83
    • /
    • 2006
  • The purpose of this study is to analyze lateral displacement behavior of clay layers in case of the banking in soft ground through model tests. Seven model tests varying with thickness of soft clay and loading velocity are performed to correlate between ground heaving and loading velocity. In case of low loading velocity, vertical settlement below loading plate and small ground heaving are obviously observed. In case of the high loading velocity, it is shown that both soil displacement at the end of a loading plate and surface heaving are large. In addition, the calculated displacements show good agreement with three cases of field measurements in clay with high moisture contents so that we can predict the range of heaving area and the amount of heaving.

  • PDF

Fast Consolidation of Soft Clay due to Ultrasonic Energy (압밀촉진을 위한 초음파의 활용)

  • Kim, Young-Uk;Song, Young-Karb;Kim, Boyung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.67-73
    • /
    • 2004
  • Various researches have been undertaken to develope a method of enhancing consolidation. This study investigated the effect of ultrasonic energy on consolidation through a series of laboratory experiments. The tests were conducted using a specially designed and fabricated equipment which can apply ultrasonic energy on a soil sample directly during a consolidometer test. Clay specimens were prepared from slurry using a centrifuge facility, and test conditions were varied depending on ultrasonic power and treatment time. The results of the study show that the effect of ultrasonic energy on consolidation is significant. The degree of significance varies with the test conditions. It could be concluded that the study showed potential application of ultrasound to reduce consolidation time.

A Case-study of Compression Index Prediction on Very Soft Clay (초연약 점토지반 압축지수 추정에 관한 연구)

  • Kim, Byeong-Kyu;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.13-18
    • /
    • 2015
  • Considering dredged ground is consolidated more than one meter, Compression index prediction is very important. But, UD-sampling and consolidation test are impossible because of high moisture content and weak shear strength. This paper demonstrates the compression index relation, $C_{c(d)}=F(e_d,C_c)$, between in-situ and dredged clay using N. Keith Tovey's Omega point and soil physical properties. Good relationship is confirmed between proposed formula and measured primary consolidation result on dredged ground in The Republic of Korea.

Soil Property of Coastal Soft Ground Considering Geological Property (지질학적 특성을 고려한 해안연약지반의 토질특성)

  • 송무영;김팔규;김연천;류권일
    • The Journal of Engineering Geology
    • /
    • v.7 no.3
    • /
    • pp.217-227
    • /
    • 1997
  • The purpose of this study is to analyze the correlation of soil properties in coastal soft ground. For the purpose of this study, several coastal soft ground areas were selected. Many large scale construction works are being executed and will increase continuously in these soft ground areas. So, soil property in these areas is very important. The grounds forming coastal areas are affected by seawater movement. So, most of these areas consist of alluvium stratum. Therefore, soil properties of eastern and southern coastal areas are very complex. Many laboratory tests were executed with disturbed and undisturbed soil samples. Undisturbed samples were taken by using thin walled tubes and transported into the laboratory with caution, so as not to disturb the sample. The consistent rate of fine-grained content in these areas is over 90%. Also, these areas contain higher water content and clay content. Therefore, knowing these soil properties, it is possible to safely design fabrics and constructions.

  • PDF

Consolidation Model and Numerical Analysis for Soft Clay Ground Considering Characteristics of Material Function (물질함수특성을 고려한 연약 점토지반의 압밀모델 및 수치해석)

  • Jeon, Je-Sung;Yi, Chang-Tok;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.123-136
    • /
    • 2004
  • Terzaghi's one-dimensional consolidation theory has some important assumption, which can't be applicable to predict the behavior of soft clay ground. Especially, predictions using infinitesimal strain and linear material function related with permeability can give rise to mistake in comparison with the result of real behavior in site. For this reason, Gibson et al. established a rigorous formulation for the one-dimensional nonlinear finite strain consolidation theory, which can consider non-linearity of material function. But it is difficult to apply this theory to predict the behavior of common soft clay ground with vertical drain. In this study, consolidation model which can consider the vertical and horizontal flow of a fully saturated clay layer, self-weight of soil and nonlinear characteristics of compressibility and permeability are derived. Numerical analysis scheme, which can be applied to consolidation analysis by derived consolidation model in this study was developed. The characteristics of material function were examined using laboratory testing such as standard consolidation test, Rowe-cell test and modified consolidation test.

Consolidation Analysis for PVD Installed Soft Ground Using a Modified Theoretical Solution (변형된 이론해를 이용한 연직배수재 설치 지반의 압밀해석)

  • Hong, Sung-Jin;Kim, Dong-Hee;Kim, Yun-Tae;Kim, Hyung-Sub;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.1
    • /
    • pp.41-53
    • /
    • 2012
  • As the permeability of soil adjacent to the vertical drain has a decisive effect on the rate of consolidation, the permeability of smear zone governs the rate of radial consolidation of PVD installed soft ground. In this study, a method was suggested to analyze the radial consolidation, based on consolidation characteristics of remolded clay, and was used to evaluate the consolidation of soft clay layer in Busan Newport. The suggested method provides more reliable consolidation behaviors than the conventional approach, which is based on the consolidation characteristics of undisturbed clay. The suggested method is also observed to be relatively insensitive to the uncertainty of $k_h/k_s$. The comparison between the analysis and field measurement revealed that the suggested method provided a reliable prediction on the rate of consolidation of PVD installed Busan new port clay and that an appropriate extent of smear zone was evaluated as about $3d_w$ by back analysis.

A Case Study on the Application of EPS Construction Method Considering Abutment Displacement in Soft Ground (연약지반에서의 교대변위를 고려한 EPS공법의 적용사례 연구)

  • Kang, Hee-June;Oh, Ill-Rok;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.698-705
    • /
    • 2004
  • Application of structural load on soft ground can cause lateral movement as well as ground break due to pressing and shearing of ground. Especially, abutment supported by pile foundation can make pile deformed due to lateral movement of ground in order to have harmful effect on structure. According to the result of this study, it is required to consider disturbance of weak soil layer when using lateral movement countermeasure method by EPS construction method as a result of performing study on safety review and EPS construction method with respect to this based on site where lateral movement occurs due to backside soil filling load at bridge abutment installed on weak ground, and it is required to sufficiently consider soil reduction during design of EPS construction method due to lateral movement deformation of soft clay layer by losing ground horizontal resistance force due to plasticity of ground around pile as well as combination part damage with pile head and expansion foundation.

  • PDF

Selection of the optimum mixture condition for stabilization of Songdo silty clay (송도 지역 해양성 점토 고화처리를 위한 최적배합 조건의 선정)

  • Kim, Jun-Young;Jang, Eui-Ryong;Chung, Choong-Ki;Lee, Yong-Jun;Jang, Soon-Ho;Choi, Jung-Yeul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.412-419
    • /
    • 2009
  • Large quantity of extra soils discharged from excavation site in Songdo area can be treated by hardening agents and utilized in surface stabilized layer overlying thick reclaimed soft soil deposit. Though surface layer stabilization method using cement or lime for very soft soils has been studied in recent years, but studies on moderately soft clayey silt has not been tried. The purpose of this research is to investigate optimum mixing condition for stabilizing Songdo marine soil with low plasiticity. The optimum mixing conditions of hardening agents with Songdo soil such as kind of agents, mixing ratio, initial water content and curing time are investigated by uniaxial compression test and laboratory vane test. The results indicate that strength increases with high mixing ratio and long curing time, while decreases drastically under certain water content before mixing. Finally, optimum mixing condition considering economic efficiency and workability with test results was proposed.

  • PDF

Development and Application of Penetration Type Field Shear Wave Apparatus (관입형 현장 전단파 측정장치의 개발 및 적용)

  • Lee, Jong-Sub;Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Kim, Hyung-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.67-76
    • /
    • 2006
  • The reasonable assessment of the shear stiffness of a dredged soft ground and soft clay is difficult due to the soil disturbance. This study addresses the development and application of a new in-situ shear wave measuring apparatus (field velocity probe: FVP), which overcomes several of the limitations of conventional methods. Design concerns of this new apparatus include the disturbance of soils, cross-talking between transducers, electromagnetic coupling between cables, self acoustic insulation, the constant travel distance of S-wave, the rotation of the transducer, directly transmitted wave through a frame from transducer to transducer, and protection of the transducer and the cable. These concerns are effectively eliminated by continuous improvements through performing field and laboratory tests. The shear wave velocity of the FVP is simply calculated, without any inversion process, by using the travel distance and the first arrival time. The developed FVP Is tested in soil up to 30m in depth. The experimental results show that the FVP can produce every detailed shear wave velocity profiles in sand and clay layers. In addition, the shear wave velocity at the tested site correlates well with the cone tip resistance. This study suggests that the FVP may be an effective technique for measuring the shear wave velocity in the field to assess dynamic soil properties in soft ground.