• Title/Summary/Keyword: soft clay soil

Search Result 368, Processing Time 0.028 seconds

Excessive Settlement Back-Analysis of Railway Embankment on Soft Soils during Service

  • Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.13-17
    • /
    • 2019
  • This paper presents case history of railway embankment excess settlement on soft clay during service in southern region of Korea. A lot of field observations show that the measured settlements are a lot larger than settlements actually calculated in this area. Back analysis is carried out to verify the soil parameters which are intended to investigate in the subsurface exploration phase and later in a laboratory test program. Recommendations and causes for the engineering practice are suggested to review the determination of excess settlements and, consequently, to improve the settlement prediction. This enormous discrepancy is due to the passing over secondary consolidation, and the design filling did not meet to real construction filling. Immediate settlement could be subsidiary factor of excess settlement.

Behaviour of geocell reinforced soft clay bed subjected to incremental cyclic loading

  • Hegde, A.;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.405-422
    • /
    • 2016
  • The paper deals with the results of the laboratory cyclic plate load tests performed on the reinforced soft clay beds. The performances of the clay bed reinforced with geocells and geocells with additional basal geogrid cases are compared with the performance of the unreinforced clay beds. From the cyclic plate load test results, the coefficient of elastic uniform compression ($C_u$) was calculated for the different cases. The $C_u$ value was found to increase in the presence of geocell reinforcement. The maximum increase in the $C_u$ value was observed in the case of the clay bed reinforced with the combination of geocell and geogrid. In addition, 3 times increase in the strain modulus, 10 times increase in the bearing capacity, 8 times increase in the stiffness and 90% reduction in the settlement was observed in the presence of the geocell and geogrid. Based on the laboratory test results, a hypothetical case of a prototype foundation subjected to cyclic load was analyzed. The results revealed that the natural frequency of the foundation-soil system increases by 4 times and the amplitude of the vibration reduces by 92% in the presence of the geocells and the geogrids.

A Study on the Optimal Mixture Ratio for Stabilization of Surface Layer on Ultra-soft Marine Clay (초연약 해성점토의 표층고화처리를 위한 최적배합에 관한 연구)

  • 천병식;고경환;김진춘
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.33-43
    • /
    • 2002
  • Recently, as large constructions on the coast increase, an application of a surface layer stabilization method which is one of the improvement methods for dredged soft clay has increased. However, there are few studies about this. The purpose of this study is clarifying characteristics of ultra-soft marine clay and hardening agent. Also, it is verifying an optimal mixture ratio of hardening agent through the laboratory tests according to designed experiments and proving by statistical analysis and pilot tests. Laboratory tests were performed with proper hardening agent and test soil in accordance with the design of experiments. Regression equations between hardening agents materials and unconfined compressive strength were derived from the tests. The applicability of regression equations were also verified by pilot tests. From the test results, it was found that hardening agent materials(cement, slag, fly-ash, inorganic salts, arwin, gypsum etc.) have some effect upon compressive strength. The optimal mixture ratio which satisfies the required compressive strength was derived from the statistical analysis. The effect of ground improvement by cements and hardening agents was confirmed through the pilot tests. This study will suggest data for design or construction criteria of stabilization of surface layer on ultra-soft marine clay.

Centrifuge modelling of temporary roadway systems subject to rolling type loading

  • Lees, Andrew S.;Richards, David J.
    • Geomechanics and Engineering
    • /
    • v.3 no.1
    • /
    • pp.45-59
    • /
    • 2011
  • Scaled centrifuge modelling techniques were used to study the soil-structure interactions and performance of a jointed rollable aluminium roadway (or trackway) system on soft clay under light truck tyre loads. The measured performance and subsequent analyses highlighted that the articulated connections significantly reduced the overall longitudinal flexural stiffness of the roadway leading to stress concentrations in the soil below the joints under tyred vehicle loadings. This resulted in rapid localised failure of the supporting soil that in turn led to excessive transverse flexure of the roadway and ultimately plastic deformations. It is shown that the performance of rollable roadway systems under tyred vehicle trafficking will be improved by eliminating joint rotation to increase longitudinal stiffness.

A study on the variety of strength about soft ground improvement material according to Mixed soil (혼합대상 토질에 따른 지반개량재의 강도 변화에 관한 연구)

  • Lee, Kwang-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1023-1030
    • /
    • 2005
  • This study is an experiment paper about the ground improvement material which using the waste residual(slag and paper fly ash) by fire. we are research to concern according to the soil to mix the ground improvement material at show strength effectiveness. Also, we can expect a long time strength increase effectiveness as reduce the dryness contraction. They are distinguished to the clay of the reclamation ground and silty sand soil. We examined around an uniaxial compress test and scanning electron microscopy. The uniaxial stress increases according to the increase of the mixed ratio of ground improvement material and the water contents have been reduced the strength value. A clay's improvement effectiveness is big but in the silty sand soil to express small effectiveness. A ground improvement material mixing of the quantity to write can not expect the effect of Ettringite.

  • PDF

Undrained Shear Strength of Clay and Stability of Sub]marine Slope Undergoing Rapid Deposition (점토의 비배수 전단강도와 지적성퇴적에 의한 해저사면의 안정성)

  • 김승열
    • Geotechnical Engineering
    • /
    • v.4 no.4
    • /
    • pp.5-18
    • /
    • 1988
  • A series of CU triaxial compression tests were conducted to investigate the variation of -untrained shear strength of underconsolidated clay at different degrees of consolidation. The soil samples were artificially made by one-dimensional consolidation using soft Bangkok Clay. The test results showed that the undrained shear strength of clay parabolically increased convoking downward with increasing degrees of consolidation. However, all the measured shear strength were unanimously related to the effective stress. These experimental results were used in the numerical analysis. A finite element computer program was developed to investigate the stability of submarine .slope undergoing rapid deposition taking into account the variation in soil compressibility and permeability during the consolidation process. The relationships of degree of consolidation with time as a function of rate of deposition and angle of slope were established. A method of predicting the time of slope failure and the volume of moving mass of soil was also made.

  • PDF

Case study on Construction and Improvement of Rahmen Structures in Deep Soft Clay Deposit (대심도 연약지반에 설치된 라멘 구조물의 시공 및 보강사례)

  • Lee, Sa-Ik;Choi, Young-Chul;Yoo, Sang-Ho;Kim, Tae-Hyung;Kim, Sung-Ryul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.85-92
    • /
    • 2014
  • Structures that have constructed in soft clay might suffer from many issues related to consolidation settlement or lateral movement of soft-clay during long-term period. Therefore, it is important to establish proper design and construction processes related to site investigation, soil improvement, construction management, and so on. This case study focused on the construction of the rahmen structure supported by pile foundations. Especially, the structure in this case had been constructed without improving underlying soft clay and before constructing backfill embankment due to the limited construction time and the traffic connection of the old road crossing new highway. Therefore, in order to satisfy the structural stability, the construction processes and countermeasure methods were carefully planned based on the results of preliminary numerical analyses and monitoring of ground behaviors. Through the trial and error precess during the construction, the structures had been successfully constructed.

Application of Ultrasonic Energy to Fast Consolidation of Soft Clays (연약지만 압밀 촉진을 위한 초음파 에너지의 활용)

  • Park, Ji-Ho;Hwang, Jung-Ha;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.1039-1042
    • /
    • 2008
  • Dredged fills have been widely used to secure a land for the engineering activities. Before the useful application of the area, the soils should be consolidated to acquire the aquate shear strength. Several research projects have attempted to develop a method fur accelerating the consolidation of soft clay. Our study examined the effect of ultrasonic energy on the consolidation of soft clay, Tests were conducted using specially designed and fabricated equipment that was capable of directly applying ultrasonic energy to soil samples during consolidation tests. The specimens were prepared from slurry using a centrifuge facility, and tests were conducted at various levels of ultrasonic power and treatment time. The study showed that ultrasonic energy had a considerable effect on consolidation time, suggesting that ultrasound can be used to reduce the consolidation time of soft clay.

Ultimate Uplift Capacity of Circular Anchors in Layered Soil

  • Shin, Eun-Chul;Das, Braja-M
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.63-72
    • /
    • 1998
  • Laboratory model test results for ultimate uplift capacity of horizontal circular anchors embedded in soft clay overlain by dense sand are presented. The effect of the critical embedment ratio on the thickness of the clay layer was evalyated. An approximate preocedure for estimating the net ultimate capacity is presented.

  • PDF

Strength Characteristics and Reinforcing Effect of Compacted Short Fiber Reinforced Clay (단섬유 보강된 다짐토의 강도특성과 보강 효과(지반공학))

  • 박영곤;장병욱
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.451-457
    • /
    • 2000
  • A series of consolidated undrained triaxial tests for compacted short fiber reinforced clay were performed to increase the field applications, e.g. retaining wall, waste landfill, soft ground etc. of soil admixtures mixed with short fiber. Kaolin clay and three types of fiber were selected. To acquire reliable length of fibers, an auto cutter was used and a helical mixer was also used to avoid floating of fibers during mixing soil and fibers. It is found that reinforcing effect by aspect ratio and mixing ratio of short fiber decreases as confining pressure is increased. Reinforcing effect has a maximum value at the aspect ratio of 120 and the fiber content of 0.6%∼1.2% and low confining pressure like 50kPa.

  • PDF