• Title/Summary/Keyword: sodium-driven flagellar motor

Search Result 2, Processing Time 0.016 seconds

Molecular Cloning and Expression of a Sodium-Driven Flagellar Motor Component Gene(motX) from Vibrio fluvialis

  • Park, Je-Hyeon;Lee, Jong-Hee;Kim, Young-Sook;Hong, Yong-Ki;Kong, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.973-978
    • /
    • 2001
  • The bacterial flagellar motor is a molecular machine that couples proton or sodium influx to force generation, mostly for driving rotation of the helical flagellar filament. In this study, we cloned a gene (motX) encoding a component of the sodium-driven flagellar motor from Vibrio fluvialis. The nucleotide sequence of the motX gene, composed of 633 bp and 211 amino acid residues, was determined. Overexpression of the motX gene in Escherichia coli using a strong promoter induced growth inhibition and cell lysis. The lethal effect of E. coli was suppressed by adding amiloride, as a potent inhibitor for the sodium channel. Electron microscopic observation of the expressed protein indicated that MotX protein induced by isopropyl ${\beta}$-D-thiogalactopyranoside caused the lysis of host cell.

  • PDF

Detection of the Recombinant MotX Protein Vibrio fluvialis in Escherichia coli with Immuno-Gold Labeling Method (Immuno Gold 표지법을 이용한 대장균내 Vibrio fluvialis MotX 단백질의 존재 부위 결정)

  • LEE Jong Hee;Park Jae Hyun;Kim Sun Hoi;An Sun Hee;Kong In Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.4
    • /
    • pp.451-453
    • /
    • 2002
  • The rotation of the flagellar motor is powered by the electrochemical gradient of specific ions across the cytoplasmic membrane. Recently, the gents of the Na'-driven motor have been cloned from marine bacterium of Vibrio sp. and some of the motor proteins have been purified and characterized. Also, motx gene encoding a channel component of the sodium type flagellar motor was identified from Vibrio Huuiaiis (KTCC 2473). The amino acid sequence of MotX protein from V, Huvialis shared 90, 85, $85\%$ identity with V, cholerae, V. alginolyticus, V parahaemolyticus, respectively. We have studied the localization of the expressed MotX protein in Escherichia coli by immune-gold labeling of ultra-thin frozen section. Our observation of the expressed protein indicated that MotX protein could be existed as attachment to inner membrane in E. coli.