• Title/Summary/Keyword: sodium-alternative salt

Search Result 18, Processing Time 0.026 seconds

Domestic and International Trends in Technologies for Sodium Reduction (국내외 나트륨 저감 기술 동향)

  • Jung, Kwangho
    • Food Science and Industry
    • /
    • v.49 no.2
    • /
    • pp.18-24
    • /
    • 2016
  • Sodium chloride (NaCl) is a very important as one of major food ingredients in food industries. Recently, as the potential risk of adult diseases such as hypertension by overingestion of sodium, health authorities of many countries are executing policies for the reduction of sodium to suppress the overingestion of sodium by intake of NaCl. As general ways, the replacement of NaCl with either alternative salts, such as solar salts and minerals, for examples calcium, magnesium, potassium, lactic acid, and so on, and the addition of flavor enhancers were used to reduce the contents of sodium in foods. Recently, controls of particle size of sodium chloride or release point are emerging as new salt-manufacturing technologies for the sodium reduction. Upon reducing NaCl in foods it is important to develop practically adaptable technologies on the basis of the consideration of the unique functions of NaCl in foods, in particular effects on rheological characters, function as a humectant, shorten shelf life time, and so on.

Effect of Sodium-Alternative Curing Salts on Physicochemical Properties during Salami Manufacture

  • Yim, Dong-Gyun;Shin, Dong-Jin;Jo, Cheorun;Nam, Ki-Chang
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.946-956
    • /
    • 2020
  • To identify the effect of sodium-alternative curing salts on the quality properties of salami through the ripening process, four salami treatments were prepared with different curing salts, T1 (-control, NaCl 1.9%), T2 (+control, NaCl 1.9%+NaNO2 0.01%), T3 (KCl 1.9%+NaNO2 0.01%), and T4 (MgCl2 1.9%+NaNO2 0.01%), under 40 days ripening conditions. Sodium-alternative salts (T3 or T4) showed characteristically different quality traits compared with T2. Especially, T3 had lower pH, water activity, volatile basic nitrogen, and lipid oxidation after 20 days of ripening period, compare with T2 or T4 (p<0.05). Sodium nitrite had critical impact on increased a* values, and T3 showed higher a* values compared with T2 or T4 (p<0.05). Sodium nitrite reduced initial growth of coliforms but sodium-alternative salts did not affect microbial growth patterns. T2-T4 containing sodium nitrite had higher content of umami nucleotide flavor compounds compared with T1, regardless of the chlorine salt species. The combined use of sodium-alternative curing salts and minimal sodium nitrite was found to be an applicable strategy on development of low sodium salami without a trade-off of the product quality.

Evaluation of citrus fiber as a natural alternative to sodium tripolyphosphate in marinated boneless broiler chicken breast and inside beef skirt (transversus abdominis)

  • Kendal R. Howard;Cheyenne L. Runyan;Allen B. Poe;Andrew M. Cassens;Lea A. Kinman
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.116-122
    • /
    • 2024
  • Objective: This research was conducted to evaluate the effects of citrus fiber (CF) as a natural alternative to sodium tripolyphosphate (STPP) in marinated broiler boneless chicken breast and inside beef skirt on overall retention rate, shear force, and consumer sensory attributes. Methods: Five different marinade formulations were targeted to include 0.9% salt, either 0.25% or 0.50% STPP or CF and water on a finished product basis. Water and salt only were considered the negative control (CON). Chicken breasts (n = 14) and inside beef skirt (n = 14) were randomly assigned to a treatment, raw weights recorded and then placed in a vacuum tumbler. Marinated weights were recorded, individually packed, and randomly assigned to either retail display for 10-day retention rate, shear force analysis, cook loss, or consumer sensory panel. Results: Pickup percentage, and overall retention was similar among treatments for chicken breast and inside beef skirt. Citrus fiber treatments resulted in higher cooking loss compared to the CON in chicken breast; though, CF050 resulted in similar cooking loss compared to STPP025 in inside beef skirt. No differences were found in sensory attributes for chicken breast, however, WBSF data showed CF025 was tougher than CF050, STPP050, and CON. Inside beef skirt with CF050 were least liked overall by the consumer panel. Conclusion: Citrus fiber included in marinades at a lower percentage rate can produce similar texture characteristics, and sensory properties compared with those marinated with STPP.

Manufacturing of Korean Traditional Handmade Paper with Reduced Fiber Damage(III)-Potassuim Carbonate Cooking of Paper Mulberry (Broussonetia Kazinoki Sieb) (섬유의 손상이 적은 한지 제조(제 2보) -닥나무 백피의 K2CO3 증자 특성)

  • 문성필;임금태
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.3
    • /
    • pp.83-89
    • /
    • 1999
  • Bast fibers of paper mulberry ( Broussonetia Kazinoki Sieb) were cooked with a weak alkaline salt, potassium carbonate which has been known as a major inorganic component of the traditional lye, and its cooking characteristics were investigated . The bast fiber was easily cooked by potassium carbonate. The pulp yield was rapidly decreased up to 20-30 mol of potassium carbonate, but the Kappa number was slowly decreased with increasing of potassium carbonate. The potassium carbonate pulps were easily defibered at low cooking chemical charge of 25mm on and high pulp yield of about 80%. These results were confirmed that pectin was easily removed during the potassium carbonate cooking. In contrast, when sodium carbonate was used as a cooling agent, the bast fiber was only partially defibered. Thus, sodium carbonate was a less effective cooling chemical of the bast fiber. The results of this experiment indicated that potassium carbonate could not only be used as a good cooling agent of bast fiber, but also as an alternative agent of sodium hydroxide.

  • PDF

Study on Environmental Hazards of Alternatives for PFOS (PFOS 대체물질의 환경유해성에 관한 연구)

  • Choi, Bong-In;Chung, Seon-Yong;Na, Suk-Hyun;Shin, Dong-Soo;Ryu, Byung-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.317-322
    • /
    • 2016
  • While PFOS sodium salt ($C_8F_{17}SO_3Na$) was not degraded by microorganisms for 28 days, the 4 alternatives were biodegraded at the rates of 21.6% for $C_{25}F_{17}H_{32}S_3O_{13}Na_3$, 20.5% for $C_{15}F_9H_{21}S_2O_8Na_2$, 15.8% for $C_{23}F_{18}H_{28}S_2O_8Na_2$ and 6.4% for $C_{17}F_9H_{25}S_2O_8Na_2$, respectively. The acute toxicity test using Daphnia magna was conducted for 48 hours, the half effective concentration ($EC_{50}$) of PFOS sodium salt ($C_8F_{17}SO_3Na$) was evaluated in 54.5 mg/L. While the 4 alternatives did not show any effect at 500.0 mg/L. The surface tension of the PFOS salt ($C_8F_{17}SO_3Na$) is 46.2 mN/m at a concentration of 500.0 mg/L. While the surface tension of the 4 alternatives was found to be superior to PFOS sodium salt ($C_8F_{17}SO_3Na$). The surface tension of $C_{23}F_{18}H_{28}S_2O_8Na_2$ (20.9 mN/m) has the lowest, followed by $C_{15}F_9H_{21}S_2O_8Na_2$ (23.4 mN/m), $C_{17}F_9H_{25}S_2O_8Na_2$ (27.3 mN/m), $C_{25}F_{17}H_{32}S_3O_{13}Na_3$ (28.2 mN/m). The four kinds of alternatives ($C_{15}F_9H_{21}S_2O_8Na_2$, $C_{17}F_9H_{25}S_2O_8Na_2$, $C_{23}F_{18}H_{28}S_2O_8Na_2$, $C_{25}F_{17}H_{32}S_3O_{13}Na_3$) were found to be superior to PFOS sodium salt ($C_8F_{17}SO_3Na$) in terms of biodegradation, Daphnia sp. acute toxicity and surface tension, and thus they were considered applicable as PFOS alternatives. Especially biodegradation rate of $C_{15}F_9H_{21}S_2O_8Na_2$, $C_{23}F_{18}H_{28}S_2O_8Na_2$ and $C_{25}F_{17}H_{32}S_3O_{13}Na_3$ was relatively high as 15.8~21.6%, and Daphnia sp. acute toxicity and surface tension were considerably superior (surface tension 39~55%) to PFOS sodium salt. Therefore, these alternatives are considered to be available as an alternative of PFOS.

An Analytical Method for the Validation of a Salt-enhancing Peptide Using a Liquid Chromatography and a Nuclear Magnetic Resonance (NMR) Spectroscopy (HPLC와 NMR를 이용한 염미성 펩타이드 분석방법 검증)

  • Park, Sun You;Jeong, Yong Jin;Kim, Mi-Yeon;Hwang, Ji Hong;Kwon, Taeg Kyu;Seo, Young Ho
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1324-1330
    • /
    • 2017
  • Salt, or sodium chloride (NaCl), is a critical ingredient in many foods. It has roles in the flavor profiles of food products, textures of foods and preservation of foods against microbes. However, it increases risks of hypertension and is closely related to the development of cardiovascular disease. In recent years, health concerns related to sodium intake caused an increased demand for salt-reduced products in worldwide; it became necessary to develop natural salt-alternative products that are globally competitive. In a recent study, researchers succeeded in obtaining a natural salt enhancer through the hydrolysis of vegetable- and animal-matter mixtures. This study used various methods to identify and quantify peptide-containing arginine as a salt-alternative peptide (SAP) in an optimum combination. Arginine, or dipeptide-containing arginine, was analyzed as a standard substance using an NMR spectroscopy. The NMR carbon signal of the guanidine group of the standard substance was verified in a similar location (the L-arginine (Arg) was 156.8 ppm, the Arg-Alanine was 156.4 ppm and the Arg-Serine was 156.4 ppm). The results suggested that it is possible to analyze peptide-containing arginine quantitatively through the hydrolysis of vegetable- and animal-matter mixtures.

Agricultural Systems for Saline Soil: The Potential Role of Livestock

  • Masters, D.G.;Norman, H.C.;Barrett-Lennard, E.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.296-300
    • /
    • 2005
  • Human-induced soil salinity is becoming a major threat to agriculture across the world. This salinisation occurs in both irrigated and rain-fed agricultural zones with the highest proportions in the arid and semi-arid environments. Livestock can play an important role in the management and rehabilitation of this land. There are a range of plants that grow in saline soils and these have been used as animal feed. In many situations, animal production has been poor as a result of low edible biomass production, low nutritive value, depressed appetite, or a reduction in efficiency of energy use. Feeding systems are proposed that maximise the feeding value of plants growing on saline land and integrate their use with other feed resources available within mixed livestock and crop farming systems. Salt-tolerant pastures, particularly the chenopod shrubs, have moderate digestible energy and high crude protein. For this reason they represent a good supplement for poor quality pastures and crop residues. The use of salt-tolerant pasture systems not only provides feed for livestock but also may act as a bio-drain to lower saline water tables and improve the soil for growth of alternative less salt tolerant plants. In the longer term there are opportunities to identify and select more appropriate plants and animals for saline agriculture.

Nutrient Value of Saltwort (Salicornia herbacea L.) as Feed for Ruminants

  • Ishikawa, N.;Shimizu, K.;Koizumi, T.;Shimizu, T.;Enishi, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.998-1001
    • /
    • 2002
  • Saltwort (Salicornia herbacea L.), a kind of halophytes in Japan, is under investigation as a feed source for livestock as well as potential oilseed crop in salt marshes and salt fields. The present experiment was undertaken to analyze the nutritive value of saltwort as feed for ruminants. To determine the apparent digestibility and nutritive value of saltwort, five Japanese native goats were fed the diets consisting of alfalfa hay cubes with 15 or 20% (n=3 and n=2, respectively) inclusion levels of saltwort in the total diet on a DM basis. All the animals were randomly offered alfalfa hay cubes as a base diet or a mixed diet of alfalfa hay cubes and saltwort at maintenance level, thereafter, alternative feed (a base or mixed diet) was offered to the experimental animals (the incomplete crossover design). Analysis of the chemical composition of saltwort showed that the plant contained high levels of total ash (40.2% DM), sodium (12.7% DM) and chlorine (19.7% DM), and relatively high levels of CP (11.7% DM) and NDF (40.4% DM). Contents of TDN and digestible CP (DCP), DE and ME of saltwort were 33.5% DM, 8.4% DM, 7.4MJ/DM kg and 5.0MJ/DM kg, respectively. These results indicate that saltwort is rich in DCP and minerals (mainly sodium chloride), but poor in energy, suggesting that saltwort could be used as a mineral or CP supplement for ruminants raised around salinized areas in which high quality feed may not be available.

Solidification of Molten Salt Waste by Gel-Route Pre-treatment (겔화 전처리법을 이용한 폐용융염의 고형화)

  • Park Hwan Seo;Kim In Tae;Kim Hwan Young;Ryu Seung Kon;Kim Joon Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.57-65
    • /
    • 2005
  • This study suggested a new method for the solidification of molten salt waste generated from the electro-metallurgical process in the spent fuel treatment. Using binary material system, sodium silicate and phosphoric acid, metal chlorides were converted into metal phosphate in the micro-reaction module formed by SiO$_{2} particles. The volatile element in the reaction module would little vaporized below 1100$^{circ}$C After the gel product was mixed with borosilicate glass powder and thermally treated at 1000$^{circ}$C, li exists as Li$_{3}$PO$_4$ separated from glass phase and, Cs and Sr would be incorporated into an amorphous phase from XRD analysis. In case of the addition of ZrCl$_{4}$ to the binary system, the gel products were transformed into NZP structure considered as an prospective ceramic waste form after heat-treatment above 700 $^{circ}$C. From these results, the gel-route pretreatment can be considered as an effective approach to the solidincation of molten salt waste by the confirmed process or waste form and this also would be an alternative method on the ANL method using zeolites in USA by the confirmation of its chemical durability as an future work.

  • PDF

Comparison of the Efficacy of Disinfectants to Control Caseous Lymphadenitis in Korean Black Goat Farms (흑염소의 건락성 림프절염 제어를 위한 소독제 효능 비교)

  • Cho, Hyeunwoo;Kim, Yeona;Jang, Beomsoon;Kim, Chan-Lan;Park, Kun Taek
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.5
    • /
    • pp.317-322
    • /
    • 2022
  • Corynebacterium pseudotuberculosis is the causative agent of caseous lymphadenitis (CLA), a chronic contagious disease in small ruminants. The prevalence of CLA has been reported to be >50% in Korean black goats. CLA is difficult to control due to a lack of efficient vaccines and treatment methods. Effective disinfection of the farm environment may be an alternative strategy for reducing the spread of C. pseudotuberculosis. The objective of this study was to evaluate the efficacy of commercial disinfectants against CLA. The six commercial disinfectants, largely composed of sodium dichloroisocyanurate, sodium hypochlorite, potassium monopersulfate triple salt, quaternary ammonium, citric acid, and copper sulfate, were tested against five different genotypes of C. pseudotuberculosis isolated from goat farms in Korea. Efficacy tests were performed in accordance with the disinfectant efficacy test guidelines recommended by the Animal and Plant Quarantine Agency of Korea with slight modifications. All disinfectants except for copper sulfate exhibited >99.99% killing efficacy under hard water conditions following 30 min of incubation, which is the recommended standard treatment time according to guidelines. The minimum bactericidal treatment time was evaluated by employing treatments for durations of 1, 5, and 15 min. The most effective compounds under hard water conditions were sodium dichloroisocyanurate, potassium monopersulfate triple salt, and sodium hypochlorite, exhibiting >99.99% killing efficacy after 1 min of treatment. In the aqueous solution forms, citric acid and the quaternary ammonium compound were the most effective, but required at least 5 min to kill >99.99% of the bacteria. The current study characterizes the killing efficacy of six commercial disinfectant active compounds against C. pseudotuberculosis. Thus, this study provides essential information regarding the efficacy of the disinfectants used to control CLA in goat farms.