• Title/Summary/Keyword: sodium sulfate solution

Search Result 293, Processing Time 0.025 seconds

Effects of Defaunation on Fermentation Characteristics and Methane Production by Rumen Microbes In vitro When Incubated with Starchy Feed Sources

  • Qin, W.Z.;Li, C.Y.;Kim, J.K.;Ju, J.G.;Song, Man-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1381-1388
    • /
    • 2012
  • An in vitro experiment was conducted to examine the effects of defaunation (removal of protozoa) on ruminal fermentation characteristics, $CH_4$ production and degradation by rumen microbes when incubated with cereal grains (corn, wheat and rye). Sodium lauryl sulfate as a defaunation reagent was added into the culture solution at a concentration of 0.000375 g/ml, and incubated anaerobically for up to 12 h at $39^{\circ}C$. Following defaunation, live protozoa in the culture solution were rarely observed by microscopic examination. A difference in pH was found among grains regardless of defaunation at all incubation times (p<0.01 to 0.001). Defaunation significantly decreased pH at 12 h (p<0.05) when rumen fluid was incubated with grains. Ammonia-N concentration was increased by defaunation for all grains at 6 h (p<0.05) and 12 h (p<0.05) incubation times. Total VFA concentration was increased by defaunation at 6 h (p<0.05) and 12 h (p<0.01) for all grains. Meanwhile, defaunation decreased acetate and butyrate proportions at 6 h (p<0.05, p<0.01) and 12 h (p<0.01, p<0.001), but increased the propionate proportion at 3 h, 6 h and 12 h incubation (p<0.01 to 0.001) for all grains. Defaunation increased in vitro effective degradability of DM (p<0.05). Production of total gas and $CO_2$ was decreased by defaunation for all grains at 1 h (p<0.05, p<0.05) and then increased at 6 h (p<0.05, p<0.05) and 12 h (p<0.05, p<0.05). $CH_4$ production was higher from faunation than from defaunation at all incubation times (p<0.05).

Comparison of Bifidobacteria Selective Media for the Detection of Bifidobacteria in Korean Commercial Fermented Milk Products

  • Kim, Eung-Ryool;Cho, Young-Hee;Kim, Yong-Hee;Park, Soon-Ok;Woo, Gun-Jo;Chun, Ho-Nam
    • Food Science of Animal Resources
    • /
    • v.30 no.1
    • /
    • pp.154-162
    • /
    • 2010
  • This study was carried out to compare the efficacy and selectivity of TOS and BS media for enumeration of bifidobacteria in commercial fermented milk products. First, bifidobacteria was isolated from 20 fermented milk products, and all isolated bifidobacteria were identified by genomic technology as Bifidobacterium lactis. The two media significantly differed from each other with regard to the recovery of B. lactis, that is, the recovery of this organism was as much as 6 logs lower on BS medium than on TOS. When the concentration of BS solution (mixture of paromomycin sulfate, neomycin, sodium propionate, and lithium chloride) used in BS medium was reduced to 50% (BS50), a relatively high percentage recovery of bifidobacteria from pure cultures was achieved. Susceptibility tests to antibiotics and tests for selective agents for the isolated bifidobacteria and lactic acid bacteria were conducted. The BS solution inhibited some lactic acid bacteria and Bifidobacterium species, while mupirocin (MU) suppressed the growth of all tested lactic acid bacteria but not Bifidobacterium. As compared with BS50 medium, TOS with or without MU showed good bifidobacteria recovery and readily distinguishable colonies; in particular, TOS supplemented with MU had a high selectivity for bifidobacteria. In conclusion, all results suggested that TOS medium with or without MU was found to be suitable for selective enumeration of bifidobacteria from mixed cultures in fermented milk, and better in that capacity than BS medium.

Extraction of protein from defatted sesame meal using the enzyme from Bacillus sp. CW-1121 (Bacillus sp. CW-1121이 생성하는 단백 분해 효소를 이용한 참깨박 단백질의 용출)

  • Choi, C.;Chun, S.S.;Cho, Y.J.
    • Applied Biological Chemistry
    • /
    • v.36 no.2
    • /
    • pp.121-126
    • /
    • 1993
  • To extract insoluble proteins of sesame meal residue by using microorganism, the sesame meal residue was treated with crude enzyme solution from Bacillus sp. CW-1121. It was found that the solubility reached to maximum at pH 7.5, $45^{\circ}C$. Under optimum condition, the nitrogen solubility with the enzyme solution from Bacillus sp. CW-1121 reached to 60% in 2 hours. Nitrogen solubility of protein from sesame meal showed minimum value at pH 4.5 and significantly increased above pH 6.0. When the protein from sesame meal extracted with Bacillus sp. CW-1121 was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis, water soluble protein was showed 4 bands and salt soluble protein was showed 2 bands. The amino acid composition of water soluble protein, salt soluble protein and free amino acid indicated relatively high contents of serine (17.24 mg/g), glutamic acid (10.77 mg/g) and glutamic acid (6.55 mg/g). Specially, the contents of essential amino acids were high.

  • PDF

Separation and Composition of Sesame Meal Protein (참깨박(粕) 단백질(蛋白質)의 분리(分離)와 조성(組成))

  • Kim, Jun-Pyong;Shim, Woo-Man;Kim, Chong-Ik
    • Applied Biological Chemistry
    • /
    • v.23 no.1
    • /
    • pp.14-22
    • /
    • 1980
  • White and black sesame produced in Korea were defatted with ethyl ether or n-hexane. Defatted sesame meal was extracted with water and salt solution, and protein extraction was precipitated at various pH 1 through 12, with trichloro acetic acid (TCA), tannic acid and ammonium sulfate, respectively. Protein was purified by Sephadex A-25, G-75, G-100 and G-200, and identified its protein fraction by polyacrylamide gel electrophoresis. Amino acids composition of protein in white sesame was analyzed by automatic amino acid analyzer. Protein contents of white sesame, black sesame and sesame meal are 20.5%, 19.2%, and 44.7%, respectively. n-Hexane was the most suitable solvent for extraction of oil from sesame. Crude protein precipitation was better in higher pH. The protein extraction was more effective with the solution containing sodium chloride tinder the pH 8. Globulin in total protein was high and prolamin was less than in other cereal proteins. Glutamic acid contents of white sesame and sesame globulin were 17.1%, and 20%, respectively. Both proteins contained relatively high levels of essential amino acids. 12-13 bands were found in water soluble protein and 2 bands in salt soluble protein were detected by the disc gel electrophoresis, and were identified in both of white and black sesame. The salt soluble protein of white sesame could be purified by Sephadee G-100 and G-200.

  • PDF

The Effect of Some Binary Additive Systems in the Electrodeposition of Cadmium (카드뮴 전해석출에서의 이성분첨가물계의 효과)

  • Lee, Kyung Ho
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.161-167
    • /
    • 1996
  • An investigation was made of possible ways in which one could control the relative rates of cadmium deposition and hydrogen evolution by binary additive systems. Benzyl alcohol was employed as an additives due to its ability to form a hydrophobic film which inhibit the electroreduction of water to form hydrogen. The second additive was chosen to make the cadmium(II) ion less hydrophilic and increase its ability to cross the hydrophobic benzyl alcohol film and be electrodeposited at the cathode. It was shown by voltammetric and current efficiency studies that ion pairing and complexing additives could be used to accelerate the reduction of cadmium in the presence of the benzyl alcohol film. It was also shown that the benzyl alcohol film lowered the dielectric constant of the solution near the electrode enough to obtain ion pairing between the sodium ion and the negative chloride complex of cadmium and accelerate the reduction of the cadmium. This acceleration did not occur in the sulfate solution in the absence of chloride since cadmium(II) is primarily present as a positive aquo complex and ion pairing, if it occured, would not accelerate but would hinder reduction of cadmium.

  • PDF

Dyeing of Soybean Fabrics using Charcoals (숯을 이용한 대두직물의 염색)

  • Lee, Sol;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.18 no.4
    • /
    • pp.531-539
    • /
    • 2016
  • Charcoal dyed fabrics have been widely used in home textiles and functional clothing due to their anti-statics, antibacterial, deodorization, far infrared emitting and anion releasing. Soybean fiber were regenerated from soybean. Soybean fiber have biodegradable, microbiocidal, non-allergic, and anti-ageing properties. The purpose of this study is to investigate the dyeing characteristics of soybean fabric using charcoal as colorants. Soybean fabrics were dyed with charcoal solution according to concentration of charcoal, dyeing temperature, and dyeing time. To improve washing fastness and investigate mordanting condition, soybean fabric and dyed soybean fabric with charcoal were mordanted by mordanting agents such as $CH_3COOH$(acetic acid), NaCl(sodium chloride) and $AlK(SO_4)_2{\cdot}12H_2O$(Aluminium Potassium Sulfate). Dyeability and color characteristics of charcoal dyed soybean fabric were obtained by computer color matching and SEM morphology analysis. Particle size of charcoal and color fastness were also investigated. The results obtained were as follows; Mean average diameter of charcoal was $1.39{\mu}m$. The dyeability of soybean fabric using charcoal as colorants was increased gradually with increasing concentration of charcoal dyeing solution and saturated at about 8%(o.w.b.). The optimum dyeing temperature and dyeing time were $90{\sim}105^{\circ}C$ and 60~90 minutes respectively. The overall wash fastness at dyeing concentration 2~4%(o.w.b.) and 6~10%(o.w.b.) were 4 degree and 3-4 degree respectively. The fastness to washing according to mordanting method indicated good grade result as more than 4 degree in all conditions. On the other hand, the staining of adjacent fabrics, i.e. PET, Acryl, Wool, Acetate, Nylon and Cotton was found to be of grade 4 or 4-5 in all conditions.

Effect of Defaunation on In Vitro Fermentation Characteristics and Methane Emission When Incubated with Forages

  • Qin, Wei-Ze;Choi, Seong-Ho;Lee, Seung-Uk;Lee, Sang-Suk;Song, Man-Kang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.197-205
    • /
    • 2013
  • An in vitro study was conducted to determine the effects of defaunation (removal of protozoa) and forage sources (rice straw, ryegrass and tall fescue) on ruminal fermentation characteristics, methane ($CH_4$) production and degradation by rumen microbes. Sodium lauryl sulfate, as a defaunation reagent, was added into the mixed culture solution to remove ruminal protozoa at a concentration of 0.375 mg/ml. Pure cellulose (0.64 g, Sigma, C8002) and three forage sources were incubated in the bottle of culture solution of mixed rumen microbes (faunation) or defaunation for up to 24 h. The concentration of ammonia-N was high under condition of defaunation compared to that from faunation in all incubations (p<0.001). Total VFA concentration was increased at 3, 6 and 12 h (p<0.05~p<0.01) but was decreased at 24 h incubation (p<0.001) under condition of defaunation. Defaunation decreased acetate (p<0.001) and butyrate (p<0.001) proportions at 6, 12 and 24 h incubation times, but increased propionate (p<0.001) proportion at all incubation times for forages. Effective degradability of dry matter was decreased by defaunation (p<0.001). Defaunation not only decreased total gas (p<0.001) and $CO_2$ (p<0.01~0.001) production at 12 and 24 h incubations, but reduced $CH_4$ production (p<0.001) at all incubation times for all forages. The $CH_4$ production, regardless of defaunation, in order of forage sources were rice straw > tall fescue > ryegrass > cellulose (p<0.001) up to 24 h incubation.

Synthesis and Characterization of CoAl2O4 Glazed Blue Ceramic Ink for Ink-Jet Printing (Ink-jet 프린팅용 CoAl2O4 고화도 나노 무기 잉크 제조 및 프린팅 특성평가)

  • Lee, Ki-Chan;Yoon, Jong-Won;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • Ink-jet printing technology has been widely attractive due to its facility for direct and fine printing on various substrates. Recent studies have focused on expanding the application of ink-jet printing technology from general consumer use and design companies to the prototype production of precision parts and parts manufacturing. The use of ink-jet printing technology in decorated tableware, tiles, and other ceramic products also has many advantages. The printing process is fast and can be adaptable to various kinds of objects because there is no direct contact point between the printer and the substrates to be printed. For application to ceramic product decoration, inks containing highly dispersed inorganic nano-pigments are required. Here we report the synthesis and characterization of blue $CoAl_2O_4$ nanopigment for ink-jet printing. Blue ceramic ink based on the obtained $CoAl_2O_4$ pigment was prepared by dissolving $CoAl_2O_4$ pigment in a mixed solution of ethylene glycol and ethanol with volume ratios of 7:3 and 8:2, respectively, to obtain the appropriate viscosity for ink-jet printing. The ink solution contained 15 wt% of $CoAl_2O_4$ pigment and Cetyltrimethyl ammonium bromide(CTAB) and Sodium dodecyl sulfate(SDS) as dispersive agents. The prepared blue ceramic ink was stably jetted and formed a sphere-shaped droplet from an ink-jet printer.

The Proteinase Distributed in the Intestinal Organs of Fish 1. Purification of the Three Alkaline Proteinases from the Pyloric Caeca of Mackerel, Scomber japonicus (어류의 장기조직에 분포하는 단백질분해효소에 관한 연구 1. 고등어 유문수조직으로부터 3종의 알칼리성 단백질분해효소의 분리${\cdot}$정제)

  • PYEUN Jae-Hyeung;KIM Hyeung-Rak
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.6
    • /
    • pp.537-546
    • /
    • 1986
  • In the previous paper(Kim et al, 1986), the alkaline proteinase from the pyloric caeca of mackerel was shown relatively strong activity in the alkaline pH range. Therefore purification of the enzyme has been undertaken to identify the proteolytic enzyme and three alkaline proteinases were isolated by ammonium sulfate fractionation, DEAE-Sephadex A-50 column chromatography and Sephadex G-100 gel filtration. One percent sodium chloride solution was the most effective for the extraction of alkaline proteinase from the pyloric caeca of mackerel. Three alkaline proteinases temporarily designated Enz. A, B and C were isolated from the pyloric caeca of mackerel, and identified to be homogeneous with electrophoresis. The specific activity of the purified Enz. A, B and C was increased to 34, 53 and 37-fold over the crude enzyme solution, respectively. Yield of them was 1.6, 2.1 and $1.5\%$, respectively, and a combined yield was $5.2\%$.

  • PDF

Evaluation on Extractability of Heavy Metals in Mine Tailings of Disused Metal Mines with Concentrations and Kinds of Soil Washing Solutions (토양세척용매의 종류 및 농도에 따른 폐금속광산 폐기물내 중금속의 추출특성)

  • Kim, Joung-Dae;NamKoong, Wan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.787-798
    • /
    • 2005
  • The objectives of this study were to assess extraction kinetics of heavy metals with extraction times and to assess extraction efficiencies of heavy metals with concentrations and kinds of washing solutions. Target materials were obtained from disused metal mines. Washing solutions were water, HCl(0.1, 0.3, 1.0 N), EDTA(0.01, 0.05, 0.1 M), and sodium dodecyl sulfate(SDS, 0.1. 0.5, 1.0%). Extraction efficiencies of heavy metals by water and SDS were below 1%, and extraction efficiencies of Zn and Cd were higher than those of Pb and Cu. As results, water and SDS were not effective in extracting heavy metals from mine tailings as washing solution, but extraction efficiencies of Pb and Cu with SDS solution increased as extraction time increased. Extraction kinetics of heavy metals with HCl and EDTA were faster than those with water and SDS. The majority of heavy metals were extracted within 6 hours, and extraction kinetics was almost independent of the solution concentration. Extraction kinetics of heavy metals after 6 hours was slow, but extraction kinetics was dependent on the solution concentration. Also, as concentrations of HCl and EDTA solution were stronger, heavy metals were extracted rapidly and extraction efficiencies were increased. The extraction efficiency was high in order of Cd>Pb>Zn>Cu in using 1.0 N HCl, and Pb>Cd>Zn>Cu in using 0.1 M EDTA. Consequently, extraction effectiveness was highest for Pb in using HCl, and for Pb and Cd in using EDTA with concentration increase. Extraction time of over 6 hours was not effective in extracting heavy metals.