• Title/Summary/Keyword: sodium nitroprusside

Search Result 199, Processing Time 0.025 seconds

The Role of Gap Junction in the Goldfish's Motion Detection Measured with Optometer Response (금붕어의 동작 감지에 미치는 갭 정션의 역할: 시각운동 반응 측정)

  • Lee, Young-Sub;Yoon, Young-Hyun;Jung, Chang-Sub
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.252-259
    • /
    • 2006
  • Gap junctions are distributed within various cells and function as electrical synapses by freely exchanging small molecules. In the retina, the practical role of gap junctions in an animal's motion detection has not been investigated very much. In this study, optometer response (OMR) was used to Investigate the effects of drugs which modulate electrical synapses between retinal ceils. An Injection of carbenoxolone, 8-Br-cAMP, sodium nitroprusside (SNP) or 8-Br-cGMP decreased goldfish's OMR in both light and dark conditions. In light conditions, an intravitreal injection of dopamine, SKF-38393 or eticlopride decreased OMR and that of SCH-23390 increased it. In dark conditions, the injections produced opposite results: dopamine, SKF-38393 and eticlopride increased OMR and SCH-23390 caused OMR to decrease. These results indicate that gap junctions between retinal cells have an Important role in goldfish's motion detection.

  • PDF

Enhanced Production of hCTLA4Ig by Suppressing Cell Death in Transgenic Rice Cell Suspension Cultures (형질전환 벼 현탁세포 배양에서 세포 사멸 억제를 통한 hCTLA4Ig 생산성 증대)

  • Kim, Myong-Sik;Nam, Hyung-Jin;Kim, Min-Sub;Kwon, Jun-Young;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.28 no.4
    • /
    • pp.260-268
    • /
    • 2013
  • Transgenic plant cell cultures are an attractive expression system for the production of industrial and pharmaceutical proteins because of their advantages in safety and low production cost. Human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) was produced and secreted when sugar was depleted in culture medium by transgenic rice cell lines (Oryza sativa L.) using RAmy3D promoter. Due to the production of the target protein by sugar depletion, concomitant occurrence of cell death is inevitable. For that reason, inhibition of cell death for enhancing productivity was necessary for the production period without energy sources. Supplementation of 0.1 mM sodium nitroprusside improved cell viability by 1.4-fold and maximum hCTLA4Ig production by 1.3-fold compared to those of control. Addition of 1 and 10 mM glutathione, N-acetylcysteine (NAC), and nicotinamide inhibited apoptotic-like programmed cell death by decreasing the activity of reactive oxygen species. Production hCTLA4Ig was enhanced 1.4-, 1.25-, and 1.15-fold with 10 mM NAC, 1 mM NAC, and 1 mM glutathione, respectively. In addition, it was found that the supplementation of NAC enhanced the cell viability.

The Effects of Endogenously and Exogenously Induced Nitric Oxides on the Nociperception of Rats (내.외인성으로 유도된 Nitric Oxide가 흰쥐의 통각전달에 미치는 효과)

  • 방준석;류정수;신창열;양성준;송현주;박전희;제현동;손의동;허인회
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.116-124
    • /
    • 2001
  • Nitric oxide is a labile, gaseous, broad spectrum second messenger that used in various tissues and cells. If it is induced by endogenously and exogenously in the neuronal cells, it is able to mediate analgesia or hyperalgesia at the periphery and in the spinal level respectively. This dual role of nitric oxide in the sensory system is very intriguing but has not been fully understood yet. In this experiment, acetylcholine (300 $\mu$g/paw), sodium nitroprusside (600 $\mu$g/paw), and L-arginine (300 $\mu$g/paw) represented antinociceptive effect to noxious topical stimulus, but pronociceptive responses followed by spinally application (20$\mu$g/5$\mu$l, 10$\mu$g/3$\mu$l, 500$\mu$g/5$\mu$l respectively). Calcium ion is critical element which activates nitric oxide synthase, therefore verapamil (300 $\mu$g/paw) and NOS inhibitor (20 mg/kg, L-NAME or L-NOArg) are injected into right hind paw (i.pl.). When verapamil is combined with NOS inhibitors analgesic effects through NO-cGMP pathway are inhibited as compared with ACh alone. Diluted formalin (2.5%), when injected into rats'hind paw (0.05 ml), elicited a biphasic algesic responses and nitric oxide had an analgesic effect on both $A\delta$ and C sensory nerve fibers which manipulate the phases respective1y. Nitric oxides, which produced from constitutive nitric oxide synthase, activated cyclooxygenase-type I and then prostaglandins are produced from them. So, indomethacin and ibuprofen, inhibitors of COX$_1$enzyme, when pretreated intraperitoneally (100 mg/kg) could reduce the hyperalgesic state. From these results, it is possible to imagine that the intrathecally administered NO donors expressed hyperalgesia through both long-term potentiation mechanism and arachidonic acid-prostaglandin cascade.

  • PDF

Effect of Glutamate on the Vestibulo-Solitary Projection after Sodium Nitroprusside-Induced Hypotension in Conscious Rats

  • Li, Li-Wei;Ji, Guang-Shi;Yang, Yan-Zhao;Ameer, Abdul Nasir;Kim, Min Sun;Park, Byung Rim;Jin, Yuan-Zhe
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.275-281
    • /
    • 2015
  • Orthostatic hypotension is most common in elderly people, and its prevalence increases with age. Attenuation of the vestibulo-sympathetic reflex (VSR) is commonly associated with orthostatic hypotension. In this study, we investigated the role of glutamate on the vestibulo-solitary projection of the VSR pathway to clarify the pathophysiology of orthostatic hypotension. Blood pressure and expression of both pERK and c-Fos protein were evaluated in the nucleus tractus solitarius (NTS) after microinjection of glutamate into the medial vestibular nucleus (MVN) in conscious rats with sodium nitroprusside (SNP)-induced hypotension that received baroreceptor unloading via sinoaortic denervation (SAD). SNP-induced hypotension increased the expression of both pERK and c-Fos protein in the NTS, which was abolished by pretreatment with glutamate receptor antagonists (MK801 or CNQX) in the MVN. Microinjection of glutamate receptor agonists (NMDA or AMPA) into the MVN increased the expression of both pERK and c-Fos protein in the NTS without causing changes in blood pressure. These results indicate that both NMDA and AMPA receptors play a significant role in the vestibulo-solitary projection of the VSR pathway for maintaining blood pressure, and that glutamatergic transmission in this projection might play a key role in the pathophysiology of orthostatic hypotension.

Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings

  • Hasanuzzaman, Mirza;Hossain, Mohammad Anwar;Fujita, Masayuki
    • Plant Biotechnology Reports
    • /
    • v.5 no.4
    • /
    • pp.353-365
    • /
    • 2011
  • The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in antioxidant defense and methylglyoxal (MG) detoxification systems of wheat seedlings exposed to salt stress (150 and 300 mM NaCl, 4 days). Seedlings were pre-treated for 24 h with 1 mM sodium nitroprusside, a NO donor, and then subjected to salt stress. The ascorbate (AsA) content decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) and the GSH/GSSG ratio increased with an increase in the level of salt stress. The glutathione S-transferase (GST) activity increased significantly with severe salt stress (300 mM). The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT) and glutathione peroxidase (GPX) activities did not show significant changes in response to salt stress. The glutathione reductase (GR), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, especially at 300 mM NaCl, with a concomitant increase in the $H_2O_2$ and lipid peroxidation levels. Exogenous NO pretreatment of the seedlings had little influence on the nonenzymatic and enzymatic components compared to the seedlings of the untreated control. Further investigation revealed that NO pre-treatment had a synergistic effect; that is, the pre-treatment increased the AsA and GSH content and the GSH/GSSG ratio, as well as the activities of MDHAR, DHAR, GR, GST, GPX, Gly I, and Gly II in most of the seedlings subjected to salt stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to salinity-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.

Role of Nitric Oxide in Leukocyte-Endothelial Interaction in Cerebral Venules during Reperfusion after Global Ischemia

  • Kim, Sae-Han;Lee, Young-Bae;Jung, Ju-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.3
    • /
    • pp.221-226
    • /
    • 2005
  • Objective : Reactive oxygen metabolites and polymorphonuclear leukocytes have been implicated in the pathophysiology of reperfusion injury. The mechanisms involved in superoxide-mediated leukocyte adherence remain unclear, however, nitric oxide[NO] may contribute to this response. The present study is undertaken to elucidate mechamisms controlling NO based mechanisms that regulated leukocyte-endothelial interactions in the cerebral vasculature after global cerebral ischemia and reperfusion. Methods : Pial venular leukocyte adherence of anesthetized newborn piglets was quantified by in situ fluorescence videomicroscopy through closed cranial windows during basal conditions and during 2hours of reperfusion after global ischemia induced by 9minutes of asphyxia. Nitric oxide synthase[NOS] was inhibited by local window superfusion of L-nitroarginine[NA]; superfusion of sodium nitroprusside[SNP] was used to donate NO. Results : The mean number of adherent leukocytes to cerebral venules in the 9minutes asphyxia and 2hours reperfusion group were $161{\pm}19$ compared with $13{\pm}4$ in the nonasphyxial group. Superfusion of L-NA through the cranial window for 2hours resulted in leukocyte adherence similar to that observed during the initial 2hours of reperfusion after asphyxia. Leukocyte adherence was not additionally increased in asphyxic animal treated with L-NA. SNP inhibited asphyxia induced leukocyte adherence back to control levels. Conclusions : Nitric oxide inhibits leukocyte adherence to cerebral venules during the initial hours of reperfusion after asphyxia, and that NO supplementation inhibit asphyxia induced leukocyte adherence back to control levels. These results indicate that NO is an important factor in ischemia-reperfusion induced leukocyte adherence.

The Hyperthermic Effect of Nitric Oxide in Central Nervous System

  • Jung, Jae-Kyung;Sohn, Uy-Dong;Lee, Seok-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.93-98
    • /
    • 2001
  • The precise mechanism of set-point regulation in hypothalamus was not elucidated. Nitric oxide synthases(NOS) were detected in hypothalamus, however, the roles of NO in hypothalamus was not fully studied. So, we tested the effects of NO on body temperature because preoptic-anterior hypothalamus was known as the presumptive primary fever-producing site. NO donor sodium nitroprusside (SNP, 4 nmol, i.c.v.) elicited marked febrile response, and this febrile response was completely blocked by indomethacin (a cyclooxygenase inhibitor). But, ODQ (selective guanylate cyclase inhibitor, $50\;{\mu}g,$ i.c.v.) did not inhibit fever induced by SNP. The cyclic GMP analogue dibutyryl-cGMP $(100\;{\mu}g,\;i.c.v.)$ induced significant pyreses, which is blocked by indomethacin. $N^G-nitro-L-arginine$ methyl ester (L-NAME, non selective NOS inhibitor) inhibited fever induced by $interleukin-1{\beta}\;(IL-1{\bata},\;10\;ng,\;i.c.v.),$ one of endogenous pyrogens. These results indicate that NO may have an important role, not related to stimulation of soluble guanylate cyclase, in the signal pathway of thermoregulation in hypothalamus.

  • PDF

The Effects of Melatonin and Sodium Nitroprusside (SNP) on Development of Porcine IVM/IVF Embryos (돼지 체외수정란의 체외발육에 있어 Melatonin과 Sodium Nitroprusside(SNP) 첨가 효과)

  • 장현용;오진영;김종택;박춘근;정희태;김정익;이학교;최강덕;양부근
    • Reproductive and Developmental Biology
    • /
    • v.28 no.2
    • /
    • pp.83-87
    • /
    • 2004
  • The objective of this study was performed to establish the in vitro culture system of porcine in vitro maturation and in vitro fertilization(IVM/IVF) embryo. These studies was to determine the effects of melatonin, nitric oxide donor(SNP), and the combination effects of SNP and melatonin in porcine IVM/IVF embryos. In routine porcine IVM/IVF procedure, oocytes were cultured for 40∼44h incubation, and the zygotes were cultured for 40∼44h in NCSU 23 medium. Then 2 to 8 cell embryos were removed cumulus cell and were allotted randomly to NCSU 23 containing different concentration of melatonin, SNP and SNP plus melatonin in 5% $O_2$, 5% $CO_2$ and 90% $N_2$ at 38.5$^{\circ}C$. Cell numbers of blastocyst were also counted using double fluorescence stain method. In NCSU 23 medium treated with melatonin 0, 1, 5 and 10 nM, the developmental rate of morula plus blastocysts were 33.3%, 39.1%, 33.3% and 27.9%, respectivly. This result show that the developmental rate of morula and blascytocys treated with 1 nM melatonin was higher than in any other groups(P<0.05). The developmental rates of morula plus blastocysts were 41.9% in 0 uM SNP, 25.6% in 50 uM and 28.4% in 100 uM, respectively. The developmental rate of morula plus blastocysts were decreased treated with SNP in NCSU 23. In combined effects of SNP plus melatonin (0, SNP 50 uM, SNP 50 uM plus melatonin 1 nM, SNP 50 uM plus melatonin 5 nM and SNP 50 uM plus melatonin 10 nM), the developmental rates beyond morula stage of porcine embryos were 31.3%, 34.1%, 39.5%, 29.4% and 39.5%, respectively. The addition of SNP 50 uM plus maltonin 1 nM, developmental rates of blastocyst was higher rate than in any other groups. Cell numbers of blastocyst in NCSU 23 treated with melatonin 0, 1, 5 and 10 nM were 41.0, 42.6, 39.6 and 33.0, respectively. In combined effects of SNP plus melatonin (0, SNP 50 uM, SNP 50 uM plus melatonin 1 nM , SNP 50 uM plus melatonin 5 nM and SNP 50 uM plus melatonin 10 nM), cell numbers of developed blastocyst were 36.3, 34.6, 39.0, 39.9 and 39.0, respectively. These result show that the cell numbers of blastocyst treated with 0, 1 and 5 nM melatonin were higher than in 10 nM group(P<0.05), but cell numbers of blatocyst produced by SNP plus melatonin were not significantly difference in all experimental groups.

PHOSPHODIESTERASE 억제제 (PDE-1), SODIUM NITROPRUSSIDE, AMITRIPTYLINE, 및 CHLORPROMAZINE의 항-혈소판작용

  • 전보권;안상건;최상현;신경호;이민수;천연숙
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.286-286
    • /
    • 1994
  • Thrombin (0.25 U/ml : TB), 소-피부 collagen (200 $\mu\textrm{g}$/ml : CG), adenosine 5'-diphesphate (4,0 $\times$ $10^{-5}$M : ADP), 및 epinephrine (4,0 $\times$ 10 $^{-5}$M : EPI)의 가토-혈소판 응집과 단백인산화작용에 미치는 PDE-I (3-isobutyl-1-methylxanthine : IBMX, 및 KR 30075), amitriptyline (AP), chlorpromazine (CP), 및 sodium nitrogrosside (SNP)의 염향을 비교-검토하였다. 그 결과, KR은 2,2 $\times$ $10^{-7}$M 이하의 $IC_{50}$/에서 EPI > ADP > CG > TB 순으로 각각을 억제하였으며, SNP 보다도 강하였고; KR-30075보다 약하나 IBMX, AP, 및 CP도 각 응집재의 작용을 억제하였으며 특히 EPI에 대하여 $10^{-8}$M 이하의 $IC_{50}$/에서 유의한 억제력을 보였다. 각 응집제들은 41 kD 인산화는 유의하게 증가시키며 47 kD와 20 kD 단백인산화는 감소시켰는데; 모든 항응집성 약물이 41 kD 인산화-증가는 유의하게 억제하였다, 아울러, AP와 CP는 47 kD 단백인산화-감소에 영향을 미치지 않았으나 20 kD 단백인산화-감소는 억제하였다. PDE-I (IBMX와 KR)와 SNP는 47 kD와 20 kD 단백인산화-감소를 다소 약화시켰으며, 43 kD와 22 kD 단백인산화를 KR > IBMX > SNP순으로 유의하게 증가시켰고, KR의 22 kD 단백인산화작용은 현저하였다.

  • PDF

Reduction of Glutathione and Apoptosis of Human Doparminergic Neuroblastoma SH-SY5Y Cells by Peroxynitrite (Peroxynitrite에 의한 사람 신경세포종 SH-SY5Y의 glutathione 감소와 apoptosis)

  • 김명선;이강민;박래길
    • Toxicological Research
    • /
    • v.16 no.2
    • /
    • pp.133-139
    • /
    • 2000
  • This study was designed to evaluate the mechanism by which reactive nitrogen intermediates (RNI) induced the cytotoxicity of human doparminergic neuroblastoma SH-SY5Y cells. 3-Morpholino-sydnonimine (SIN-l), a donor of peroxynitrite (ONOO) and sodium nitroprusside (SNP), a donor of nitric oxide (NO) induced cell detachment and apoptotic death, as characterized by chromatin condensation, the ladder pattern fragmentation of genomic DNA and morphological nuclear changes. SIN-l also induced the activation of caspase 3-like protease in a time-dependent manner. Exogenous antioxidants, such as reduced glutathione (GSH), N-acetylcysteine (NAC), and selenium protected the cells from apoptotic death and reduced the activation of caspase 3-like protease by SIN-1. Furthermore, SIN-l directly reduced the intracellular levels of glutathione. Taken together, these data suggested that RNI including NO and peroxynitrite decrease the concentration of intracellular antioxidant such as GSH, which lead to the apoptotic death of human neuroblastoma SH-SY5Y cells.

  • PDF