DOI QR코드

DOI QR Code

Enhanced Production of hCTLA4Ig by Suppressing Cell Death in Transgenic Rice Cell Suspension Cultures

형질전환 벼 현탁세포 배양에서 세포 사멸 억제를 통한 hCTLA4Ig 생산성 증대

  • Kim, Myong-Sik (Department of Biological Engineering, Inha University) ;
  • Nam, Hyung-Jin (Department of Biological Engineering, Inha University) ;
  • Kim, Min-Sub (Department of Biological Engineering, Inha University) ;
  • Kwon, Jun-Young (Department of Biological Engineering, Inha University) ;
  • Kim, Dong-Il (Department of Biological Engineering, Inha University)
  • 김명식 (인하대학교 공과대학 생물공학과) ;
  • 남형진 (인하대학교 공과대학 생물공학과) ;
  • 김민섭 (인하대학교 공과대학 생물공학과) ;
  • 권준영 (인하대학교 공과대학 생물공학과) ;
  • 김동일 (인하대학교 공과대학 생물공학과)
  • Received : 2013.08.14
  • Accepted : 2013.08.28
  • Published : 2013.08.30

Abstract

Transgenic plant cell cultures are an attractive expression system for the production of industrial and pharmaceutical proteins because of their advantages in safety and low production cost. Human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) was produced and secreted when sugar was depleted in culture medium by transgenic rice cell lines (Oryza sativa L.) using RAmy3D promoter. Due to the production of the target protein by sugar depletion, concomitant occurrence of cell death is inevitable. For that reason, inhibition of cell death for enhancing productivity was necessary for the production period without energy sources. Supplementation of 0.1 mM sodium nitroprusside improved cell viability by 1.4-fold and maximum hCTLA4Ig production by 1.3-fold compared to those of control. Addition of 1 and 10 mM glutathione, N-acetylcysteine (NAC), and nicotinamide inhibited apoptotic-like programmed cell death by decreasing the activity of reactive oxygen species. Production hCTLA4Ig was enhanced 1.4-, 1.25-, and 1.15-fold with 10 mM NAC, 1 mM NAC, and 1 mM glutathione, respectively. In addition, it was found that the supplementation of NAC enhanced the cell viability.

Keywords

References

  1. Durocher, Y. and M. Butler (2009) Expression systems for therapeutic glycoprotein production. Curr. Opin. Biotechnol. 6: 700-707.
  2. Gomord, V., P. Chamberlain, R. Jefferis, and L. Faye (2005) Biopharmaceutical production in plants: problems, solutions and opportunities. Trends Biotechnol. 23: 559-565. https://doi.org/10.1016/j.tibtech.2005.09.003
  3. Lui, V. C. H., P. K. H. Tam, M. Y. K. Leung, J. Y. B. Lau, J. K. Y. Chan, V. S. F. Chan, M. Dallman, and K. S. E. Cheah (2003) Mammary gland-specific secretion of biologically active immunosuppressive agent cytotoxic-T-lymphocyte antigen 4 human immunoglobulin fusion protein (hCTLA4Ig) in milk by transgenesis. J. Immunol. 277: 171-183.
  4. Pree, I. and T. Wekerle (2006) New approaches to prevent transplant rejection: Co-stimulation blockers anti-CD40L and CTLA4Ig. Drug Discov. Today. 3: 41-47. https://doi.org/10.1016/j.ddmec.2006.02.012
  5. Hellwig, S., J. Drossard, R. M. Twyman, and R. Fischer (2004) Plant cell cultures for the production of recombinant proteins. Nat. Biotechnol. 22: 1415-1422. https://doi.org/10.1038/nbt1027
  6. Terashima. M., Y. Murai, M. Kawamura, S. Nakanishi, T. Stoltz, L. Chen, W. Drohan, R. L. Rodriguez, and S. Katoh (1999) Production of functional human ${\alpha}_1$-antitrypsin by plant cell culture. Appl. Microbiol. Biotechnol. 52: 516-523. https://doi.org/10.1007/s002530051554
  7. Lockshin, R. A. and Z. Zakeri (2004) Apoptosis, autophagy, and more. Int. J. Biochem. Cell Biol. 36: 2405-2419. https://doi.org/10.1016/j.biocel.2004.04.011
  8. Lam E. (2004) Controlled cell death, plant survival and development. Nat.Rev. Mol. Cell Biol. 5: 305-315. https://doi.org/10.1038/nrm1358
  9. Kerr, J. F., A. H. Wyllie, and A. R. Currie (1972) Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J.Cancer 26: 239-257. https://doi.org/10.1038/bjc.1972.33
  10. Adrain, C. and S. J. Martin (2001) The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem. 26: 390-397. https://doi.org/10.1016/S0968-0004(01)01844-8
  11. Wolf, B. B. and D. R. Green (1999) Suicidal tendencies: apoptotic cell death by caspase family proteases. J. Biol. Chem. 274: 20049-20052. https://doi.org/10.1074/jbc.274.29.20049
  12. Lennon, S. V., S. J. Martin, and T. G. Cotter (1991) Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif. 24: 203-214. https://doi.org/10.1111/j.1365-2184.1991.tb01150.x
  13. Schweichel, J. and H. Merker (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7: 253-266. https://doi.org/10.1002/tera.1420070306
  14. Bras, M., B. Queenan, and S. A. Susin (2005) Programmed cell death via mitochondria: different modes of dying. Biochemistry-Moscow+ 70: 231-239. https://doi.org/10.1007/s10541-005-0105-4
  15. Danon, A., V. Delorme, N. Mailhac and P. Gallois (2000) Plant programmed cell death: A common way to die. Plant Physiol. Biochem. 38: 647-655. https://doi.org/10.1016/S0981-9428(00)01178-5
  16. Kirisako, T., M. Baba, N. Ishihara, K. Miyazawa, M. Ohsumi, and T. Yoshimori (1999) Formatin process of putophagosome is taced with Apg8/Aut7 in yeast. J. Cell Biol. 147: 435-446 https://doi.org/10.1083/jcb.147.2.435
  17. Thompson, H., R. Abdullah, and E, Cocking (1986) Protoplast culture of rice (Oryza sativa L.) using media solidified with agarose. Plant Science 47: 123-133 https://doi.org/10.1016/0168-9452(86)90059-2
  18. Battaglino, R. A., M. Huergo, A. M. R. Pilosof, and G. B. Bartholomai (1991) Culture requirements for the production of protease by Aspergillus oryzae in solid state fermentation. Appl. Microbiol. Biotechnol. 35: 292-296
  19. Bees, E. P., B. J. Woffenden, and C. Zhao (2000) Plant proteolytic enzymes: possible roles during programmed cell death. Plant Mol. Biol. 44: 339-415
  20. Greenberg, J. T. (1996) Programmed cell death: A way of life for plants. Proc. Natl. Acad. Sci. USA 93: 12094-12097. https://doi.org/10.1073/pnas.93.22.12094
  21. Brown, G. (2010) Nitric oxide and neuronal death. Nitric Oxide 23: 153-165. https://doi.org/10.1016/j.niox.2010.06.001
  22. Takuma, K., P. Phuagphong, E. Lee, K. Mori, A. Baba, and T. Matsuda (2001) Anti-apoptotic effect of cGMP in cultured astrocytes: inhibition by cGMP-dependent protein kinase of mitochondrial permeable transition pore. J. Biol. Chem. 276: 48093-48099. https://doi.org/10.1074/jbc.M108622200
  23. Na, H. J., H. T. Chung, K. S. Ha, H. Lee, Y. G. Kwon, T. R. Billiar, and Y. M. Kim (2008) Detection and measurement for the modification and inactivation of caspase by nitrosative stress in vitro and in vivo. Methods Enzymol. 441: 317-327. https://doi.org/10.1016/S0076-6879(08)01217-2
  24. Chung, H. T., H. O. Pae, B. M. Choi, T. R. Billiar, and Y. M. Kim (2001) Nitric oxide as a bioregulator of apoptosis. Biochem. Biophys. Res. Commun. 28: 1075-1079.
  25. Oszajca, K., M. Bieniasz, G. Brown, M. Swiatkowska, J. Bartkowiak, and J. Szemraj (2008) Effect of oxidative stress on the expression of t-PA, u-PA, u-PAR, and PAI-1 in endothelial cells. Biochem. Cell Biol. 10: 477-486.
  26. Kruman, I. I. and M. P. Mattson (1999) Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J. Neurochem. 72: 529-540. https://doi.org/10.1046/j.1471-4159.1999.0720529.x
  27. Grub, S., W. E. Trommer, and A. Wolf (2002) Role of antioxidants in the O-hydroxyethyl-D-(Ser)8-cyclosporine A (SDZIMM-125)-induced apoptosis in rat hepatocytes. Biochem. Pharmacol. 64: 1725-1736. https://doi.org/10.1016/S0006-2952(02)01384-9
  28. Amor, Y., E. Babiychuk, D. Inze, and A. Levine (1998) The involvement of poly(ADP-ribose) polymerase in the oxidative stress responses in plants. FEBS Lett. 440: 1-7. https://doi.org/10.1016/S0014-5793(98)01408-2
  29. Carpaneto, A., A. M. Cantu, and F. Gambale (1999) Redox agents regulate ion channel activity in vacuoles from higher plant cells. FEBS Lett. 442: 129-132. https://doi.org/10.1016/S0014-5793(98)01642-1
  30. Hockenbery, D. M., Z. N. Oltvai, X. M. Yin, C. L. Millman, and J. K. Stanley (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241-251. https://doi.org/10.1016/0092-8674(93)80066-N
  31. Yan, C. Y. I., G. Ferrari, and L. A. Greene (1995) N-Acetylcysteine promoted survival of PC12 cells is glutathione-independent but transcription-dependent. J. Biol. Chem. 270: 26827-26832. https://doi.org/10.1074/jbc.270.45.26827