• Title/Summary/Keyword: sodium ions

Search Result 410, Processing Time 0.027 seconds

Selectivity of cations in electrodialysis and its desalination efficiency on brackish water (전기투석 막여과의 이온제거 특성 및 지하염수의 담수화효율)

  • Choi, Su Young;Kweon, Ji Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.445-456
    • /
    • 2013
  • In this study, desalination by electrodialysis with ion exchange membranes was applied to synthetic waters with various ion concentrations and also for ground waters from coastal areas in Korea. Electrodialysis performance on the synthetic solutions showed the similar tendency in operation time and current curves, i.e., shorter operation time and higher maximum current with increasing applied voltages. The ED results of synthetic waters with different ion compositions, i.e., $Na_2SO_4$, $MgSO_4$, $CaSO_4$, at the similar conductivity condition, i.e., $1,250{\mu}s/cm$ revealed that effects of mono- and divalent ions on water quality and performance in electrodialysis were different. The divalent ions had less efficiency in the ED compared to monovalent sodium ions and also divalent calcium ions showed better performance than Mg ions. The electrodialysis on the ground waters produced high quality of drinking water. The groundwater from SungRoe however showed a buildup of membrane resistance. Organic matter concentrations and great portions of divalent ions in the groundwater were possible causes of the deteriorated performance.

Enhancement effect of phosphate and silicate on water defluoridation by calcined gypsum

  • Al-Rawajfeh, Aiman Eid;Alrawashdeh, Albara I.;Aldawdeyah, Asma;Hassan, Shorouq;Qarqouda, Ruba
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.35-49
    • /
    • 2013
  • Research work on removal of fluoride from water, referred to as water defluoridation, has resulted into the development of a number of technologies over the years but they suffer from either cost or efficiency drawbacks. In this work, enhancement effects of phosphate and silicate on defluoridation of water by low-cost Plaster of Paris (calcined gypsum) were studied. To our knowledge, the influence of silicate on defluoridation was not reported. It was claimed, that the presence of some ions in the treated water samples, was decreasing the fluoride removal since these ions compete the fluoride ions on occupying the available adsorption sites, however, phosphate and silicate ions, from its sodium slats, have enhanced the fluoride % removal, hence, precipitation of calcium-fluoro compounds of these ions can be suggested. Percentage removal of $F^-$ by neat Plaster is 48%, the electrical conductance (EC) curve shows the typical curve of Plaster setting which begins at 20 min and finished at 30 min. The addition of phosphate and silicate ions enhances the removal of fluoride to high extent > 90%. Thermodynamics parameters showed spontaneous fluoride removal by neat Plaster and Plaster-silicate system. The percentage removal with time showed second-order reaction kinetics.

Pilymeric Membrane Sodium Ion-Selective Electrodes Based on Calix[4}arene Triesters

  • Kim, Yun Deok;Jeong, Hae Sang;Gang, Seong Ok;Nam, Gye Cheon;Jeon, Seung Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.405-408
    • /
    • 2001
  • New lipophilic triesters of calix[4]arene and calix[4]quinone are investigated as sodium ion-selective ionophores in poly(vinyl chloride) membrane electrodes. For an ion selective electrode based on calix[4]arene triester I, the linear response is 1 ${\times}$10-3.5 to 1 ${\times}$ 10-1 M of Na+ concentrations. The selectivity coefficients for sodium ion over alkali metal and ammonium ions are determined. The detection limit (logaNa+ = -4.50) and the selectivity coefficient (logKNa+,K+pot = -1.86) are obtained for polymeric membrane electrode containing calix[4]arene triester I.

Synthesis, Crystal structure, and Magnetic Properties of Dinuclear Iron(III) Complexes with Methoxo Bridges

  • Shin, Jong-Won;Han, Jeong-Hyeong;Rowthu, Sankara Rao;Kim, Bong-Gon;Min, Kil-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3617-3622
    • /
    • 2010
  • The reaction of stoichiometric amount of $FeCl_2{\cdot}4H_2O$, (2-pyridylmethyl, 3-pyridylmethyl)amine (2,3-pyma) and sodium azide/sodium thiocyanate in methanol under aerobic conditions affords the dinuclear Fe(III) complexes, [(2,3-pyma) $(N_3)_2Fe({\mu}-OCH_3)_2Fe(N_3)_2$(2,3-pyma)]${\cdot}CH_3OH$ (1) and [(2,3-pyma)$(NCS)_2Fe({\mu}-OCH_3)_2Fe(NCS)_2$(2,3-pyma)] (2) in good yield. Two bis-methoxy-bridged diiron(III) complexes are isolated and characterized. The coordination geometries around iron(III) ions in 1 and 2 are the same tetragonally distorted octahedron. The iron(III) ions are coordinated by two nitrogens of a 2,3-pyma, two nitrogens of two azide/thiocyanate ions, and two oxygens of two methoxy groups. Both compounds are isomorphous. The structures of 1 and 2 display the C-$H{\cdots}\pi$ and/or $\pi-\pi$ stacking interactions as well as hydrogen bonding interactions, respectively. Compounds 1 and 2 show significant antiferromagnetic couplings through the bridged methoxy groups between the iron(III) ions in the temperature range from 5 to 300 K ($H=-2JS_1{\cdot}S_2$, J=-19.1 and $-13.9\;cm^{-1}$ for 1 and 2).

Removal of Cadmium. Copper and Chromium Ions in Aqueous Solution using Water in Oil Micro-Emulsion (W/O 마이크로에멀젼을 이용한 수용액중의 카드뮴, 구리 및 크롬이온의 분리제거)

  • Lee, Sung-Sik;Lee, Eun-Joo;Kim, Hyung-Jun;Kim, Jong-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1021-1026
    • /
    • 2000
  • The removal of cadmium, copper and chromium ions was carried in a phase transfer reactor using W/O(water in oil) microemulsion containing sodium di[2-ethylhexyl] sulfosuccinate(AOT) and isooctane system. Removal efficiencies and mass transfer rate of $Cd^{2+}$, $Cu^{2+}$ and $Cr^{3+}$ were increasing with increasing pH of aqueous solution. However, $Cr^{6+}$ was not extracted by W/O microemulsion with AOT/isooctane system. It was found that removal of heavy metal ions were required an attractive electrostatic interaction between the metal ions and W/O microemulsion. The relationship between mass transfer rate. Jo of $Cd^{2+}$, $Cu^{2+}$ and $Cr^{3+}$ and pH of aqueous solution by W/O microemulsion suggested.

  • PDF

A Consideration of Hydrazine Syntheses (Hydrazine 合成의 一考察)

  • Lee, Hac-Ki
    • Journal of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1961
  • It is important to study hydrazine because of the development of new uses for its derivatives. The Rasching method is the only satisfactory one for synthesizing hydrazine; it involves the oxidation of ammonia by sodium hypochlorite in the presence of some such catalyst as gelatin. Calcium hypochlorite was substituted for the sodium hypochlorite particularly in this work, applying agar-agar as catalyst. The results of the experiments are as follow: 1. The yield is proportional to the mole-ratio of ammonia to available chlorine in calcium hypochlorite and about 60% is obtained when the ratio is 20. 2. Agar-agar can be used as a catalyst and its proper concentration in the solution is 0.005%. 3. Proper concentration of available chlorine in the reaction solution is 0.23 mole/l. 4. The most effective condition for the reaction is a temperature of $60{\sim}65^{\circ}C.$ maintained for $20{\sim}25min$. 5. The reaction takes place equally well in either an open or closed container. 6. When calcium hypochlorite is applied in place of sodium hypochlorite, the yield of hydrazine is increased as much as 17%. 7. The yield of hydrazine is decreased by eliminating the suspension of $Ca(OH)_2$ which results from the use of calcium hypochlorite. 8. When $Ca(OH)_2$ is added to Rasching process, the yield of hydrazine is raised normally. 9. The fact that some metal ions, such as $Cu^{++},$ inhibit the formation of hydrazine was proved. 10. The suspension of $Ca(OH)_2$ acted as a remarkable adsorbent for $Cu^{++}$ like gelatin. The suspension of $Ca(OH)_2$ which results from the use of calcium hypochlorite acts as a catalyst, absorbing metal ions, to increase the yield of hydrazine. So I think that calcium hypochlorite is a more efficient oxidant than sodium hypochlorite in hydrazine syntheses.

  • PDF

Effect of Ionic Polymers on Sodium Intake Reduction (이온성 고분자를 이용한 나트륨 섭취 감소 효과)

  • Park, Sehyun;Lee, YoungJoo;Lee, Jonghwi
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.533-538
    • /
    • 2013
  • Sodium chloride is present in our body fluids, and the blood contains approximately 0.9 wt% salt, which plays an important role in maintaining the osmotic pressure. However, the amount of salt intake has consistently increased, and an excessive intake can be the cause of high blood pressure, etc. In this study, it was investigated in vivo and in vitro whether biocompatible ionic polymers with K or Ca ions can be replaced by Na ions through an ion exchange process to be excreted. Among the polymers, Ca-polystyrene sulfonate, K-polystyrene sulfonate, Ca-carrageenan, and Ca-tamarind had an excellent Na exchange ability in the body temperature, simulated gastric fluid and also simulated intestinal fluid. The mechanism of Na removal by absorption and excretion without changing food taste in the mouth through the insolubility properties of these polymers is expected to be a solution for the current problems related with excess sodium intake.

Fabrication of Potentiometric Sodium-ion Sensor Based on Carbon and Silver Inks and its Electrochemical Characteristics (탄소 및 은 잉크 기반의 전위차 나트륨 이온 센서 제조 및 이의 전기화학적 특성)

  • Kim, Seo Jin;Son, Seon Gyu;Yoon, Jo Hee;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.456-460
    • /
    • 2021
  • A potentiometric sodium-ion (Na+) sensor was prepared using a screen-printing process with carbon and silver inks. The two-electrode configuration of the sensor resulted in potential differences in Na+ solutions according to Nernstian equation. The obtained Na+-sensor exhibited an ideal Nernstian sensitivity, fast response time, and low limit of detection. The Nernstian response was stable when the sensor was tested for repeatability and long-term durability. The Na+-selective membrane coated onto the carbon electrode selectively passed sodium ions against interfering ions, indicating an excellent selectivity. The portable Na+-sensor was finally fabricated using a printed circuit system, demonstrating the successful measurements of Na+ concentrations in various real samples.

Effects of Fineness of Chitosan Fiber on the Adsorption Characteristics of Metal Ion (금속이온흡착 특성에 미치는 키토산 섬유 굵기의 영향)

  • 최해욱;정영진;이명환;이순장;박수영;이신희
    • Textile Coloration and Finishing
    • /
    • v.15 no.3
    • /
    • pp.146-153
    • /
    • 2003
  • This article describes the metal ions adsorption of chitosan fibers. The chitosan fibers were manufactured by wet spinning using 2% acetic acid as solvent, 10% aqueous sodium hydroxide as non solvent, and 4%chitosan solution as a solvent. The adsorption characteristics of chitosan fibers towards 100ppm solutions of various metal ions such as Cu(II), Cd(II), Cr(III), Hg(II) were examined at different pH value by ICP-Atomic Emission Spectrometer. The adhesiveness of metallic ions to the chitosan fiber were increased with the increase of pH and the decrease of denier. On the other hand, from pH4, chitosan fiber that is immersed in metal ion aqueous solution of Cu(II) and Cd(II) became homogeneous solution because is dissolved. The adhesiveness of metallic ions to chitosan fiber were found to increased in a sequence of Hg(II)> Cr(III)> Cu(II)> Cd(II). The antimicrobial characteristics of the chitosan fiber by adhered metal ions, virgin chitosan fiber, and cotton fiber were evaluated. The antimicrobial activity of the fibers were increased with the decrease of denier.

Grain Growth Behavior of (K0.5Na0.5)NbO3 Ceramics Doped with Alkaline Earth Metal Ions

  • Il-Ryeol Yoo;Seong-Hui Choi;Kyung-Hoon Cho
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.135-141
    • /
    • 2023
  • The volatilization of alkali ions in (K,Na)NbO3 (KNN) ceramics was inhibited by doping them with alkaline earth metal ions. In addition, the grain growth behavior changed significantly as the sintering duration (ts) increased. At 1,100 ℃, the volatilization of alkali ions in KNN ceramics was more suppressed when doped with alkaline earth metal ions with smaller ionic size. A Ca2+-doped KNN specimen with the least alkali ion volatilization exhibited a microstructure in which grain growth was completely suppressed, even under long-term sintering for ts = 30 h. The grain growth in Sr2+-doped and Ba2+-doped KNN specimens was suppressed until ts = 10 h. However, at ts = 30 h, a heterogeneous microstructure with abnormal grains and small-sized matrix grains was observed. The size and number of abnormal grains and size distribution of matrix grains were considerably different between the Sr2+-doped and Ba2+-doped specimens. This microstructural diversity in KNN ceramics could be explained in terms of the crystal growth driving force required for two-dimensional nucleation, which was directly related to the number of vacancies in the material.