• Title/Summary/Keyword: sodium hydroxide[NaOH]

Search Result 229, Processing Time 0.021 seconds

Functional Ingredients of Perilla Frutescens L. Britt Extracts and Preparation of PVA Nanoweb Containing Extracts (자소 추출물의 기능성 성분과 자소 추출물을 함유하는 PVA 나노 섬유의 제조)

  • Wang, Qian Wen;Lee, Jung-Soon
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.256-267
    • /
    • 2017
  • The purpose of this study was to analyze the functional ingredients of Perilla Frutescens L. Britt extracts and to confirm the possibility of producing PVA nanofibers using extracts. Distilled water, 3% aqueous sodium hydroxide solution and ethanol were used as extraction solvents. The electrospinning was carried out at a PVA concentration of 12%, an applied voltage of 10 kV and a tip to collector distance of 15cm. The contents of volatile substances, essential oils, total polyphenols and flavonoids of the extracts were measured to examine the constituents of functional materials. Flavor components and esters were identified in 3% sodium hydroxide and ethanol extracts. The content of polyphenols and flavonoids in ethanol extracts was higher than that of medicinal plants. 1wt.% of Tween 20 was added to disperse the essential oil components of the ethanol extract. Addition of a dispersant made it possible to produce a homogeneous mixture by having some compatibility with the ethanol extracts and the PVA molecule. When the concentration of the ethanol extract was 0.25 and 0.5wt%, relatively uniform PVA nanofiber having an average diameter of 350 to 365nm could be produced. The results of FT-IR, XRD and DSC analysis confirmed that Perilla Frutescens L. Britt ethanol extract was well mixed with PVA molecules and was electrospun.

The Novel Synthesis of Carboxymethyl-chitin by a New Process (Carboxymethyl-chitin 제조공정의 단순화)

  • Han, Sang Mun;Ahn, Byung Je;Kim, Yong-Woo;Kim, Yong Beom;Yu, Kook Hyun;Lee, Seung Jin
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.4
    • /
    • pp.334-340
    • /
    • 2001
  • The water soluble carboxymethyl-chitin (CM-chitin) has been well known to be very useful to the cosmetic field as a moisturizer, a smoothener, a cell activater and a cleaner for face skin conditioning. In this study, the preparation process of CM-chitin was simplified with elimination of some procedures in the conventional method. The chitin powder was mixed with sodium hydroxide solution. And then a mixture of sodium monochloroacetate (or monochloroacetic acid) and isopropyl alcohol (or a mixed solution with water and isopropyl alcohol) was added to thorough the agitation and the freezing during 16 hours. The CM-chitin with a high degree of substitution by the improved process was obtained.

  • PDF

Characteristics of Transparent Conductive Films of Single-Walled Carbon Nanotubes with Treatment of Surfactants and Nitric Acid

  • Kim, Myeong-Su;Gwak, Jeong-Chun;Lee, Seung-Ho;Lee, Nae-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.32.1-32.1
    • /
    • 2009
  • 현재 ITO를 대체할 재료로 투명 전도성 탄소나노튜브(carbon nanotube, CNT) 필름에 대한 연구가 진행 되고 있다. 이러한 연구에서 특히 CNT 필름의 투과도에 따른 전기저항을 향상시키기 위한 연구가 활발히 진행되고 있다. 본 연구에서는 단일벽 CNT (single-walled CNT)를 여러 가지 계면활성제로 최적 분산시킨 수용액으로부터 제조한 CNT 필름의 투과도에 따른 면 저항 (sheet resistance) 변화를 관찰하였다. 우선 계면활성제로 분산시킨 CNT 수용액을 알루미나 재질의 필터에서 정량적으로 진공 필터링하여 CNT 필름을 제조하였다. 알루미나 필터를 sodium hydroxide (NaOH) 수용액으로 용해시켜 제거함으로써 얻은 CNT 필름을 유리기판 위에 부착시켰다. 필름의 전기저항을 낮추기 위해 유리기판 위에 부착된 CNT 필름을 질산 (HNO3) 용액으로 처리하였다. Scanning electron microscopy, UV-Vis spectroscopy를 이용하여 각각 필름의 형상과 광 투과도를 분석하였고, 4-point probe로 면 저항을 측정하였다. 계면활성제로 분산시킨 CNT 필름 대부분의 면 저항은 질산 처리에 의해 감소하였다. 이는 CNT 표면에 코팅되어 있던 계면활성제가 질산에 의해 제거되었기 때문인 것으로 예상된다. 여러 계면활성제 중 sodium dodecyl benzenesulfonate로 분산시킨 CNT 필름이 산 처리 후에 가장 낮은 면 저항을 보였다. 그리고 Polyvinyl pyrrolidone (PVP)과 cetyltrimethylammonium bromide (CTAB)를 사용하여 제조한 CNT 필름의 면 저항이 가장 뚜렷한 감소를 보였다.

  • PDF

Mechanical and durability properties of fly ash and slag based geopolymer concrete

  • Kurtoglu, Ahmet Emin;Alzeebaree, Radhwan;Aljumaili, Omar;Nis, Anil;Gulsan, Mehmet Eren;Humur, Ghassan;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • v.6 no.4
    • /
    • pp.345-362
    • /
    • 2018
  • In this paper, mechanical and short-term durability properties of fly ash and slag based geopolymer concretes (FAGPC-SGPC) were investigated. The alkaline solution was prepared with a mixture of sodium silicate solution ($Na_2SiO_3$) and sodium hydroxide solution (NaOH) for geopolymer concretes. Ordinary Portland Cement (OPC) concrete was also produced for comparison. Main objective of the study was to examine the usability of geopolymer concretes instead of the ordinary Portland cement concrete for structural use. In addition to this, this study was aimed to make a contribution to standardization process of the geopolymer concretes in the construction industry. For this purpose; SGPC, FAGPC and OPC specimens were exposed to sulfuric acid ($H_2SO_4$), magnesium sulfate ($MgSO_4$) and sea water (NaCl) solutions with concentrations of 5%, 5% and 3.5%, respectively. Visual inspection and weight change of the specimens were evaluated in terms of durability aspects. For the mechanical aspects; compression, splitting tensile and flexural strength tests were conducted before and after the chemical attacks to investigate the residual mechanical strengths of geopolymer concretes under chemical attacks. Results indicated that SGPC (100% slag) is stronger and durable than the FAGPC due to more stable and strong cross-linked alumina-silicate polymer structure. In addition, FAGPC specimens (100% fly ash) showed better durability resistance than the OPC specimens. However, FAGPC specimens (100% fly ash) demonstrated lower mechanical performance as compared to OPC specimens due to low reactivity of fly ash particles, low amount of calcium and more porous structure. Among the chemical environments, sulfuric acid ($H_2SO_4$) was most dangerous environment for all concrete types.

A study on corrosion resistance and surface properties of AZ31 alloy according to Ca-GP addition during PEO treatment (PEO 처리시 Ca-GP첨가에 따른 AZ31합금의 내식성 및 표면특성에 관한 연구)

  • Lee, Jun-Su;Park, Je-Shin;Park, Il-Song
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.238-247
    • /
    • 2021
  • PEO (plasma electrolytic oxidation) was applied to modify the surface of AZ31 magnesium alloy in this study. The mixed solution of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) was used as the electrolyte, and 0 - 0.05 g/L of Ca-GP (Glycerol Phosphate Calcium salt) was added in the electrolyte as an additive. PEO treatment was conducted at a current density of 30mA/cm2 for 5 minutes using a DC power supply. The surface properties were identified by SEM, XRD and surface roughness analyses, and the corrosion resistance was evaluated by potentiodynamic polarization and immersion tests. In addition, the biocompatibility was evaluated by immersion test in SBF solution. As the concentration of Ca-GP was increased, the surface morphology was denser and more uniform, and the amount of Ca and the thickness of oxide layer increased. Only Mg peak was observed in XRD analysis due to very thin oxide layer. The corrosion resistance of PEO-treated samples increased with the concentration of Ca-GP in comparision with the untreated sample. In particular, the highest corrosion resistance was identified at the group of 0.04g Ca-GP through potentiodynamic polarization and immersion tests in saline solution (0.9 wt.%NaCl). During the immersion in saline solution, pH rapidly increased at the beginning of immersion period due to rapid corrosion, and then increase rate of pH decreased. However, the pH value in the SBF temporarily increased from 7.4 to 8.5 during the day, then decreased due to the inhibition of corrosion with HA(hydroxyapatite) formation.

Effect of Concentration of NaOH and NaCl in Dipping Solution and Dipping Period of Egg in Completeness of Egg Pidan (침지액의 NaOH와 NaCl의 농도 및 계란 침지기간이 계란 피단의 완성도에 미치는 영향)

  • Shin, Teak-Soon;Cho, Seong-Keun;Lee, Hong-Gu;Cho, Byung-Wook;Kang, Han-Seok;Park, Hyean-Cheal;Bae, Seok-Hyeon;Kim, Yun-Seok;Kim, Byeong-Woo
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.117-126
    • /
    • 2012
  • This study carried out on the manufacturing of pidan. The production of pidan can be one of solutions for over-produced eggs and stable egg price. For the alkali-pickling solution for manufacturing of Pidan, the tested concentration of NaOH and NaCl were respectively as 3, 5, 7% and 5, 10, 15, 20%, and examined every 2 days for 14days. According to the results, pH value of alkali-pickling solution was increased by the increment of NaOH concentration and the pickling period, and was decreased by the increment of NaCl concentration. The pH value of egg yolk was increased by the increment of NaOH concentration, but it was not significantly different by the NaCl concentration. By the increment of NaOH and NaCl concentrations, the alkali infiltration in egg yolk and egg white was accelerated. Furthermore, the weight change of the eggs in the alkali-solution has no effects on manufacturing of Pidan. Liquefied albumen showed significant differences by NaOH concentration rather than that of NaCl. There was no liquefied albumen for 14days at 3% of NaOH, but it was found between 11-12days at 5% and 8-10days at 7%, respectively. The pH values of egg white when it was liquefied albumen were between 11.8 and 12.0. Pidan was made by heat treatment after 6-7days dipped in the solution at the concentration of 7%, about 10days at 5%, and 12-14days at 3% of NaOH, respectively. Although, the period of manufacturing of Pidan was saved by the increment of NaOH concentration, liquefied albumen was accelerated and the food preference was decreased by ammonia odor. Therefore, the suitable concentration of NaOH is between 3 and 5%, and that of NaCl is between 5 and 10% due to the effect of salinity by the soaking period. Through this study, optimal pickling solution and dipping time for manufacturing of Pidan was figured out, and also find out that it can save a time about 15days for manufacturing of Pidan.

Removal of Semi-volatile Soil Organic Contaminants with Microwave and Additives (극초단파(마이크로파)와 첨가제를 이용한 오염토양 내 준휘발성 유기오염물질 제거)

  • Jeong, Sangjo;Choi, Hyungjin
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.67-77
    • /
    • 2013
  • To improve the energy efficiency of conventional thermal treatment, soil remediation with microwave has been studied. In this study, the remediation efficiency of contaminated soil with semi-volatile organic contaminants were evaluated with microwave oven and several additives such as water, formic acid, iron powder, sodium hydroxide (NaOH) solution, and activated carbon. For the experiment, loamy sand and sandy loam collected from Imjin river flood plain were intentionally contaminated with hexachlorobenzene and phenanthrene, respectively. The contaminated soils were treated with microwave facility and the mass removals of organic contaminants from soils were evaluated. Among additives that were added to increase the remediation efficiency, activated carbon and NaOH solution were more effective than water, iron powder, and formic acid. When 10 g of hexachlorobenzene (142.4 mg/kg-soil) or phenanthrene (2,138.8 mg/kg-soil) contaminated soil that mixed with 0.5 g iron powder, 0.5 g activated carbon and 1 ml 6.25 M NaOH solution were treated with microwave for 3 minutes, more than 95% of contaminants were removed. The degradation of hexachlorobenzene during microwave treatments with additives was confirmed by the detection of pentachlorobenzene and tetrachlorobenzene. Naphthalene and phenol were also detected as degradation products of phenanthrene during microwave treatment with additives. The results showed that adding a suitable amount of additives for microwave treatments fairly increased the efficiency of removing semi-volatile soil organic contaminants.

Compressive Strength Properties of Geopolymer Using Power Plant Bottom Ash and NaOH Activator (화력발전소 바텀애쉬와 수산화나트륨 활성화제를 이용해 제작한 지오폴리머의 압축강도 특성)

  • An, Eung-Mo;Cho, Sung-Baek;Lee, Su-Jeong;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.71-77
    • /
    • 2012
  • When a new bonding agent using coal ash is utilized as a substitute for cement, it has the advantages of offering a reduction in the generation of carbon dioxide and securing the initial mechanical strength such that the agent has attracted strong interest from recycling and eco-friendly construction industries. This study aims to establish the production conditions of new hardening materials using clean bottom ash and an alkali activation process to evaluate the characteristics of newly manufactured hardening materials. The alkali activator for the compression process uses a NaOH solution. This study concentrated on strength development according to the concentration of the NaOH solution, the curing temperature, and the curing time. The highest compressive strength of a compressed body appeared at 61.24MPa after curing at $60^{\circ}C$ for 28 days. This result indicates that a higher curing temperature is required to obtain a higher strength body. Also, the degree of geopolymerization was examined using a scanning electron microscope, revealing a micro-structure consisting of a glass-like matrix and crystalized grains. The microstructures generated from the activation reaction of sodium hydroxide were widely distributed in terms of the factors that exercise an effect on the compressive strength of the geopolymer hardening bodies. The Si/Al ratio of the geopolymer having the maximum strength was about 2.41.

Apatite formation on the surface treated-titanium plate in a simulated body fluid (생체유사액 침적에 따른 표면 처리된 titanium plate에 아파타이트 형성)

  • Lee, Chang-Hoon;Jin, Hyeng-Ho;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • The purpose of this study was to investigate the formation of apatite layer on two different titanium substrate treated with biomimetic method, Titanium plates were heat-treated at different temperatures of $400^{\circ}C$, $600^{\circ}C$, and $800^{\circ}C$ for 5 h in air atmosphere, And then, that plates were chemically treated with an alkali solution of 1 M sodium hydroxide (NaOH), The pre-treated titanium plates were soaked in the simulated body fluid (SBF) of Kokubo's recipe, After soaking for 7 days and 21 days in SBF, the coated layers formed on the titanium plates were characterized and compared with the morphology and chemical composition, The apatite formation was more activated on the titanium plates chemically treated with NaOH compared with the only heat-treated titanium plates.

Assessment of the Adsorption Capacity of Cadmium and Arsenic onto Paper Mill Sludge Using Batch Experiment (회분식 실험을 통한 제지슬러지의 카드뮴 및 비소 흡착능 평가)

  • Baek, Jongchan;Yeo, Seulki;Park, Junboum;Back, Jonghwan;Song, Youngwoo;Igarashi, T.;Tabelin, C.B.
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.46-53
    • /
    • 2014
  • The purpose of this study is to promote utilization of paper mill sludge as an adsorbent for stabilizing heavy metals in contaminated water by measuring the adsorption capacity of paper mill sludge for cadmium and arsenic. To measure adsorption capacity of paper mill sludge, sorption isotherm experiments were analyzed by Langmuir and Freundlich isotherm models. Also, two methods of chemical modifications were applied to improve the adsorption capacities of paper-mill-sludge: the first method used sodium hydroxide (NaOH), called PMS-1, and the second method used the NaOH and tartaric acid ($C_4H_6O_6$) together, called PMS-2. For Cd adsorption, PMS-1 presented the increase of reactivity while PMS-2 presented the decline of reactivity compared to that of untreated paper-mill-sludge. In case of As adsorption, both PMS-1 and PMS-2 showed the decrease of adsorption capacities. This is because zeta-potential of paper mill sludge was changed to more negative values during chemical modification process due to the hydroxyl group in NaOH and the carboxyl group in $C_4H_6O_6$, respectively. Therefore, we may conclude that the chemical treatment process increases adsorption capacity of paper mill sludge for cation heavy metals such as Cd but not for As.