• Title/Summary/Keyword: sodium carbonate solution

Search Result 94, Processing Time 0.022 seconds

Formation and Preservative Effectiveness of Water-Insoluble Copper Compound in Wood Treated with Copper Sulfate and Sodium Carbonate (황산구리와 탄산나트륨 처리 목재 내의 물불용성 구리화합물의 생성과 방부효력)

  • Kim, Jin-Kyung;Lee, Jong-Shin
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.5
    • /
    • pp.358-364
    • /
    • 2008
  • Wood-inorganic material composite (WIC) was prepared by impregnating wood with copper sulfate ($CuSO_4\;5H_2O$) solution and by immersed wood in sodium carbonate($Na_2CO_3$) solution in order to introduce insoluble copper compounds {copper carbonate hydroxide, $CuCO_3\;Cu(OH)_2$} into the wood to give fungicidal effects in treated-wood. The weight percent gains (WPGs) of treated wood reached maximum value by impregnation of 20% copper sulfate solution and immersion in about 15% sodium carbonate solution for 24 hrs. Inorganic substances were present mainly in the lumina and cross-field pitting of tracheides. These substances were proved to be the insoluble copper carbonate hydroxide against water by the energy dispersive X-ray analyzer in conjunction with a scanning electron microscope (SEM-EDXA). The treated specimens showed high preservative effectiveness because the weight losses were hardly occurred by the fungi degradation test.

  • PDF

Preparation of Sodiumisocyanate and its Analyzing Method in the Presence of Impurities $Na_2CO_3$, Urea, and Biuret (Sodium Isocyanate의 제법 및 $Na_2CO_3$, Urea, Biuret 혼재시 그의 정량분석법에 관한 연구)

  • 국채호
    • YAKHAK HOEJI
    • /
    • v.7 no.2_3
    • /
    • pp.67-71
    • /
    • 1963
  • Studies the reaction mechanism and optimal reaction condition of the process of preparing sodium isocyanate, by means of heating of sodium carbonate and urea. Proposing, at the sametime, the quantitative analyzing method of sodium isocyanate in the presence of impurities of $Na_{2}CO_{3}$, urea and biuret. 1. Sodium isocyanate could be prepared by means of heating reaction of sodium carbonate and urea. 2. Adding urea into the heated sodium carbonate is reasonable. 3. Quantitative analysis of sodium isocyanate in the presence of impurities, $Na_{2}CO_{3}$, urea and biuret could be done by the following method:-adding nitrobarite solution into sample solution in order to remove $CO_{3}"$ and neutralize the solution, filtering off $BaCO_{3}$, and then precipitating isocyanate as a silver salt, filtering off AgNCO, and then, titrating remaining $AgNO_{3}$ with $NH_{4}SCN$, (indicator $FeNH_{4}(SO_{4})_{2})$/TEX>

  • PDF

Preparation of Regenerated Cellulose Fiber via Carbonation. I. Carbonation and Dissolution in an Aqueous NaOH Solution

  • Oh, Sang Youn;Yoo, Dong Il;Shin, Younsook;Lee, Wha Seop;Jo, Seong Mu
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Cellulose carbonate was prepared by the reaction of cellulose pulp and $CO_2$ with treatment reagents, such as aqueous $Zncl_2$ (20-40 wt%) solution, acetone or ethyl acetate, at -5-$0^{\circ}C$ and 30-40 bar ($CO_2$) for 2 hr. Among the treatment reagents, ethyl acetate was the most effective. Cellulose carbonate was dissolved in 10% sodium hydroxide solution containing zinc oxide up to 3 wt% at -5-$0^{\circ}C$. Intrinsic viscosities of raw cellulose and cellulose carbonate were measured with an Ubbelohde viscometer using 0.5 M cupriethylenediamine hydroxide (cuen) as a solvent at $20^{\circ}C$ according to ASTM D1795 method. The molecular weight of cellulose was rarely changed by carbonation. Solubility of cellulose carbonate was tested by optical microscopic observation, UV absorbance and viscosity measurement. Phase diagram of cellulose carbonate was obtained by combining the results of solubility evaluation. Maximum concentration of cellulose carbonate for soluble zone was increased with increasing zinc oxide content. Cellulose carbonate solution in good soluble zone was transparent and showed the lowest absorbance and the highest viscosity. The cellulose carbonate and its solution were stable in refrigerator (-$5^{\circ}C$ and atmospheric pressure).

A study on the fabrication of high purity lithium carbonate by recrystallization of low grade lithium carbonate (저급 탄산리튬의 재결정화를 통한 고순도 탄산리튬 제조에 대한 연구)

  • Kim, Boram;Kim, Dae-Weon;Hwang, Sung-Ok;Jung, Soo-Hoon;Yang, Dae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2021
  • Lithium carbonate recovered from the waste solution generated during the lithium secondary battery manufacturing process contains heavy metals such as cobalt, nickel, and manganese. In this study, the recrystallization of lithium carbonate was performed to remove heavy metals contained in the powder and to increase the purity of lithium carbonate. First, the leaching efficiency of lithium carbonate according to pH in the aqueous hydrochloric acid solution was examined, and the effect on the recrystallization of lithium carbonate according to the equivalent and concentration of sodium carbonate was confirmed. As the equivalent and concentration of sodium carbonate increased, the recovery rate of lithium carbonate improved. And the SEM image showed that the crystal shape was changed depending on the reaction conditions with sodium carbonate. Finally, the high purity lithium carbonate of 99.9% or more was recovered by washing with water.

Degumming of Antheraea yamamai silkworm cocoon

  • Shin, Bong-Seob;Jeon, Jong-Young;Kim, Jong-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.31 no.2
    • /
    • pp.127-131
    • /
    • 2015
  • Oak silkworm, Antheraea yamamai (A. yamamai), has been used for clothing and surgical suture and considered as biomaterial due to RGD tripeptide. This paper reported the degumming conditions of A. yamamai using sodium oleate, high pressure and temperature, and sodium carbonate. Degumming ratio of A. yamamai cocoon using sodium oleate was less than 10%. High pressure and temperature treatment induced 30% weight loss of A. yamamai cocoon. The concentration, treatment temperature and time using sodium carbonate was examined and revealed the following conditions for degumming; 5% owf, 60 min at 100℃. The degummed solution was confirmed using UV and FT-IR spectrometer. Our results can be used to handle A. yamamai silkworm cocoon for further application including material processing.

Cell Wall Micropore Loading of Pulp Fibers (펄프 섬유의 세포벽 미세공극 충전)

  • Lee, Jong-Man;Jo, Byoung-Muk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.57-64
    • /
    • 1992
  • The unique cell wall micropores of pulp fiber can be utilized as loading site in variety of important practical application which could be the basis of new papermaking technologies. One of these includes the manufature of paper containing higher levels of in situ filler precipitated. Hardwood pulp fiber were first impregnated with the solution of sodium carbonate($Na_2CO_3$). The micropores in cell wall of pulp fibers were filled with the liquid salt solution. The second calcium nitrate($Ca(NO_3)_2$) solution formed an insoluble calcium carbonate($CaCO_3$) precipitate within the cell wall micropores by interacting with the first sodium carbonate solution. The effects of chemical concentration and dryness of pulp fibers on the retention of cell wall micropore loaded filler were investigated. The paper properties of cell wall micropore loaded pulp fibers were compared with those of conventionally loaded and lumen loaded pulp fibers. Also the presense of the fillers within the cell wall micropore was observed by SEM. Increasing the chemical concentration to generate the calcium carbonate increased the retention of filler in cell wall micropore loaded pulp fibers. The particle size distribution of precipitated calcium carbonate ranged from $0.1{\mu}m$ to $80{\mu}m$. But, the average particle size of cell wall micropore loaded calcium carbonate was $4{\mu}m$. The paper made from never dried pulp fibers, the cell wall micropores which were filled with calcium carbonate, had better mechanical and optical properties than those of conventionally loaded or lumen loaded pulp fibers.

  • PDF

Effects of pH and Hardness Resulted from Total Carbonate Concentration on Sericin Solubilities (총탄산 농도에 따른 pH 및 경도가 견층 Sericin 용해에 미치는 영향)

  • Nam, Yeong-Rak;Chae, Dae-Seok;Seong, Jae-Cheon
    • Journal of Sericultural and Entomological Science
    • /
    • v.31 no.2
    • /
    • pp.121-126
    • /
    • 1989
  • Two kinds of solution for the measurement of solubilities of Sericin are prepared as followings at temperature 90 deg. C. One has the total carbonate concentration as 0, 50, 100mg CO2/l prepared with non-carbonate distilled water, sodium hydrogen carbonate and 0.1N HCI and NaOH, the other has total hardness, that is, calcium hardness or magnesium hardness as 0, 20, 50, 100mg CaCO2/l respectively prepared with non-carbonate distilled water, calcium carbonate and magnesium oxide. Solubilities of Cocoon layer Sericin at above solution gives following results ; 1. pH shows little effect on the solubility of Sericin at the non-carbonate solution but at the carbonate solution pH shows a sensitive effect on the solubility of Sericin. These means that pH controls the concentration of H2CO3, HCO3-and CO32- which prevent and promote the solution of Sericin. 2. After the cocoon layer treatment at the solution, the initial pH of 4.0, 7.0, 9.0 of the solution changed to 6.0-6.5 at the lower total carbonate solution. However in the higher total carbonate solution pH did not changed very much. This may be explained by the buffer action of carbonate. 3. The effect of the hardness on the solubility of Sericin was not found in the non-carbonate solution with the standard hardness after treatment of cocoon layer.

  • PDF

Thermal Reaction of Iron Precipitates Prepared by Adding Sodium Carbonate Solution to Ferrous Chloride and Ferric Chloride Solutions (염화철과 탄산나트륨 용액에 의한 철 침전물의 열반응)

  • 이서우;김태옥;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.2
    • /
    • pp.105-111
    • /
    • 1981
  • The iron precipitates were prepared by adding sodium carbonate solution to ferrous chloride and ferric chloride solutions to pH=9 and pH=4.5, respectively. The thermal reaction of the iron precipitates was investigated by means of TGA, DTA and X-ray diffraction. In the former the crystallization of $\alpha$-$Fe_2O_3$ begins at about 35$0^{\circ}C$, while in the latter at about 30$0^{\circ}C$, during the calclnation in air. In the iron precipitate from ferrous chloride solution, the activation energy for the crystallite-growth or $\alpha$-TEX>$Fe_2O_3$ in air is about 7.6$\times$104J/mole between 800 and 100$0^{\circ}C$. As the result of X-ray diffration for the reduction product of hematite, it was found that maghemite, magnetite and wustite are formed and that hematite is transformed to magnetite through maghemite.

  • PDF

Production of Ag- Ni fine powder by coprecipitation (공침법을 이용한 Ag-Ni 초미분 제조)

  • Kim, Bong-Seo;Woo, Byung-Chul;Byun, Woo-Bong;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1342-1344
    • /
    • 1994
  • Silver-Nickel alloy has been used as a electrical contact material for low voltage, low current. Since the solubility between Ag and Ni is very low, it is difficult to produce Ag-Ni alloy by using conventional melting method and disperse Ni powder homogeneously in Ag matrix. In this study we have been produced fine Ag-Ni alloy powder by using coprecipitation method. Firstly, we have produced silver-nickel nitrate solution by dissolving the Ag and Ni ingot in nitric acid solution and then, coprecipitate (Ag, Ni)carbonate dropping Ag-Ni nitrate solution to sodium carbonate solution. (Ag, Ni) carbonate is heat-treated in $H_2$ atmosphere, $400^{\circ}C$ and it has been analysed by TGA, SEM, XRD, ICP. It is represented Silver-Nickel alloy powder in the particle range of $0.1{\sim}0.5{\mu}m$.

  • PDF

The Properties of Hardened Slag by Alkali and Curing Method (알칼리 첨가 및 양생방법에 따른 슬래그 경화체의 특성)

  • 김원기;소정섭;배동인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.27-32
    • /
    • 2002
  • In this research influences of type and concentration of alkali activator and curing condition on the hydration, and properties of alkali activated blast furnace slag(AAS) concrete were investigated. Sodium carbonate and sulfate were used as alkali activators and their concentration were 4~10 weight percent with Na$_2$O equivalent to binder. The curing conditions were standard curing using 23$^{\circ}C$ water and activated curing chamber at $65^{\circ}C$. Results show that in case of sodium carbonate addition high early strengths were gained by activation of early hydration, but later strength gained was slight. On the other side sodium sulfate strengths were continuously increased with adding amount and ages. Steam curing activated early hydration so that early strengths were improved but later strengths were similar to standard curing. The strength reduction of AAS mortar with sodium sulfate was less than OPC mortar in 5% sulfuric acid solution so that AAS concrete can be useful for acid-resistance concrete.

  • PDF