• Title/Summary/Keyword: sodium alumina silicate

Search Result 11, Processing Time 0.077 seconds

Degradation Propeties of Alkali-Activated Alumino-Silicate Composite Body Exposed to High Temperature (알칼리 활성화 알루미노실리케이트계 경화체의 고온 열화 특성)

  • Kim, Won-Ki;Kim, Hong-Joo;Lee, Seung-Heun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.627-630
    • /
    • 2005
  • This paper examines degradation properties of alkali-activated alumino-silicate composite body by NAS solution exposed to high temperature. Activators include sodium hydroxides and sodium silicate solution. In the result of experiment, flexural and compressive strength of AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than alumina cement base mortar. Particularly, In case of compressive strength, alumina cement base mortar was decreased by about $60\~70\%$. While, AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than that curing by room temperature. The above results showed that AAS base inorganic binder has a good mechanical properties exposed to high temperature($400\~600$).

  • PDF

Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymer

  • Abadel, Aref A.;Albidah, Abdulrahman S.;Altheeb, Ali H.;Alrshoudi, Fahed A.;Abbas, Husain;Al-Salloum, Yousef A.
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.127-140
    • /
    • 2021
  • In this study, twenty-five geopolymer (GP) mixes were prepared by varying the alkaline solids to Metakaolin (MK) and sodium silicate to NaOH ratios from 0.1 to 0.5 and 0.2 to 1.0, respectively, thus giving a wide range of molar ratios of silica to alumina, sodium oxide to alumina and water to sodium oxide. The compressive strength of these GP mixes was determined for four curing schemes involving oven curing at 100℃ for 24 h and three ambient curing with the curing ages of 3, 14, and 28 days. The test results revealed that for the manufacture of GP binder for structural applications of strength up to 90 MPa, the molar ratio of silica to alumina should be greater than 2.3, sodium oxide to alumina should be between 0.6 to 1.2, and water to sodium oxide should not exceed 12. The compressive strength of ambient cured GP mortar gets stabilized at 28 days of ambient curing. Experimental findings were also corroborated by GP microstructure analysis. The embodied energy of MK-based GP mortars, especially of high strength, is significantly less than the cement mortar of equivalent strength.

The Strength Properties of Alkali-Activated Slag Mortars by Combined Caustic Alkali with Sodium Carbonate as Activator (가성알칼리와 탄산나트륨을 혼합한 활성화제를 사용한 알칼리 활성화 고로슬래그 모르타르의 강도 특성)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.745-752
    • /
    • 2012
  • This paper studies the effect of the compressive strength for combined alkali-activated slag mortars. The effect of activators such as alkali type and dosage factor on the strength was investigated. The alkalis combinations made using five caustic alkalis (sodium hydroxide (NaOH, A series), calcium hydroxide ($Ca(OH)_2$, B series), magnesium hydroxide ($Mg(OH)_2$, C series), aluminum hydroxide ($Al(OH)_3$, D series), and potassium hydroxide (KOH, E series)) with sodium carbonate ($Na_2CO_3$) were evaluated. The mixtures were combined in different dosage at 1M, 2M, and 3M. The study results showed that the compressive strength of combined alkali-activated slag mortars tended to increase with increasing sodium carbonate. The strength of combined alkali-activated slag mortars was better than that of control cases (without sodium carbonate). The result from scanning electron microscopy (SEM) analysis confirmed that there were reaction products of calcium silicate hydrate (C-S-H) and alumina-silicate gels from combined alkali-activated slag specimens.

Evaluation of Service Life of Silicate Impregnated Concrete (실리케이트 함침제를 사용한 콘크리트의 내구수명 평가)

  • Kim, Hyeok-Jung;Jang, Seung-Yup;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.533-541
    • /
    • 2018
  • Chloride attack, one of the major deterioration phenomena in RC(Reinforced Concrete) structure, causes corrosion of reinforcement, and this leads degradation of serviceability and structural problems. The application of silicate based impregnant to concrete surface are known for excellent constructability and cost-benefit for the maintenance of RC structure. In the work, the compressive strength and resistance of chloride diffusion for concrete were evaluated after improving property of concrete surface through two types of silicate based impregnant. Furthermore, based on the previous research and the result from the work, service life analysis was performed. After impregnating of silicate, strength and resistance of chloride diffusion were remarkably improved, and the service life increase to 159% for silicate A impregnation and 304% for silicate B impregnation, respectively.

Mechanical Performance Evaluation in Concrete Impregnated with Silicate for TiO2 Utilization (광촉매 활용을 위한 실리케이트 기반 표면 침투제를 적용한 콘크리트의 역학적 성능 평가)

  • Kim, Hyeok-Jung;Kim, Young-Kee;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.108-114
    • /
    • 2018
  • Degradations of durability and aesthetic performance in concrete happen during service life due to surface deterioration and dirt stains. Recently, many researches have been performed on self-cleaning and surface enhancement through surface impregnant using photocatalytic reaction with VOCs(Volatile Organic Compounds) removal. This paper is for preliminary study on surface impregnation with silicate and photocatalysis - $TiO_2$. For the work, two types of silicate based impregnants(CS - Coloidal Silica and SC - Sodium Alumina Silicate) are considered. Several tests for viscosity and surface tension are performed, and pull-off test on impregnated concrete is performed. For the surface impregnated concrete, $TiO_2$ is absorbed through submerging and spraying conditions. Through compressive strength test and SEM analysis, it is evaluated that spraying $TiO_2$ on surface impregnated concrete after 30min. of drying period is very effective both for strength enhancement and surface densification.

Mechanical and durability properties of fly ash and slag based geopolymer concrete

  • Kurtoglu, Ahmet Emin;Alzeebaree, Radhwan;Aljumaili, Omar;Nis, Anil;Gulsan, Mehmet Eren;Humur, Ghassan;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • v.6 no.4
    • /
    • pp.345-362
    • /
    • 2018
  • In this paper, mechanical and short-term durability properties of fly ash and slag based geopolymer concretes (FAGPC-SGPC) were investigated. The alkaline solution was prepared with a mixture of sodium silicate solution ($Na_2SiO_3$) and sodium hydroxide solution (NaOH) for geopolymer concretes. Ordinary Portland Cement (OPC) concrete was also produced for comparison. Main objective of the study was to examine the usability of geopolymer concretes instead of the ordinary Portland cement concrete for structural use. In addition to this, this study was aimed to make a contribution to standardization process of the geopolymer concretes in the construction industry. For this purpose; SGPC, FAGPC and OPC specimens were exposed to sulfuric acid ($H_2SO_4$), magnesium sulfate ($MgSO_4$) and sea water (NaCl) solutions with concentrations of 5%, 5% and 3.5%, respectively. Visual inspection and weight change of the specimens were evaluated in terms of durability aspects. For the mechanical aspects; compression, splitting tensile and flexural strength tests were conducted before and after the chemical attacks to investigate the residual mechanical strengths of geopolymer concretes under chemical attacks. Results indicated that SGPC (100% slag) is stronger and durable than the FAGPC due to more stable and strong cross-linked alumina-silicate polymer structure. In addition, FAGPC specimens (100% fly ash) showed better durability resistance than the OPC specimens. However, FAGPC specimens (100% fly ash) demonstrated lower mechanical performance as compared to OPC specimens due to low reactivity of fly ash particles, low amount of calcium and more porous structure. Among the chemical environments, sulfuric acid ($H_2SO_4$) was most dangerous environment for all concrete types.

Dielectric Properties in Na2O-B2O3-SiO2 Glass Containing CoO (CoO를 함유한 Na2O-B2O3-SiO2 계 유리의 유전적 특성)

  • Lee, Chanku;Lee, Sudae;Joung, Maeng-Sig
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.49-53
    • /
    • 2000
  • Sodium borate silicate glass of composition $10Na_2O-39B_2O_3-50SiO_2-CoO$ and $20Na_2O-14B_2O_3-65SiO_2-CoO$ were prepared by melting oxide mixtures in alumina crucible at $1210^{\circ}C$ in an electric furance in air for 2h, and then quenching in air. The dielectric behavior of the quenched glasses are the subject of the present work. Properties such as dielectric constant and resistivity as a function frequency and temperature are reported. From the dielectric spectra, the glass phase transition temperature has been found to decrease at a rate $Na_2O$ 20 mol% and the dielectric constants increase with increasing $Na_2O$ content. The frequency dependent resistivity response of glass exhibits a non-Debye type relaxation.

  • PDF

Strength development of ground perlite-based geopolymer mortars

  • Celikten, Serhat;Isikdag, Burak
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.227-234
    • /
    • 2020
  • Raw perlite is a volcanic alumino-silicate and is used as aggregate in the construction industry. The high silica and alumina contained in the raw perlite allows the production of geopolymer mortar with the help of alkaline solutions. In this study, different geopolymer mortars are obtained by mixing ground perlite (GP), sodium hydroxide (NaOH), water and CEN standard sand and the strength and microstructure of these mortars are investigated. Mortar specimens are placed in the oven 24 hours after casting and kept at different temperatures and times, then the specimens are cured under laboratory conditions until the day of strength tests. After curing, unit weight, ultrasound pulse velocity, flexural and compressive strengths are determined. Experimental results indicate that the mechanical properties of the mortars enhance with increasing oven-curing period and temperatures as well as increasing NaOH molarity. In addition, SEM/EDS and XRD analyses are performed on the mortar specimens and the results are interpreted.

A Study on Characteristics of Concrete Impregnated with the Inorganic Surface Penetration Agents (무기계 표면침투제 용액으로 함침한 콘크리트의 특성 연구)

  • Bae, Ju-Seong;Kim, Hyeok-Jung;Park, Gook-Jun;Han, Jong-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.71-77
    • /
    • 2010
  • The concrete structure's durability and integrity is reduced owing to various deterioration phenomena. Therefore, it is important to prevent the deterioration phenomena. This study inquired into the various experimental results of specimens with different dilution concentration and impregnation time by the each solution to present the economic and efficient using method of the inorganic surface penetration agents. As a results, the reasonable dilution concentration and impregnation time of colloidal silica solutions are 15% and 5 minute and for the sodium alumina silicate solutions are 17% and 10 second.

Properties of Glass Melting Using Recycled Refused Coal Ore (선탄 경석 재활용 원료를 이용한 유리 용융 특성)

  • Lee, Ji-Sun;Kim, Sun-Woog;Ra, Yong-Ho;Lee, Youngjin;Lim, Tae-Young;Hwang, Jonghee;Jeon, Dae-Woo;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.727-733
    • /
    • 2019
  • In this study, the glass melting properties are evaluated to examine the possibility of using refused coal ore as replacement for ceramic materials. To fabricate the glass, refused coal ore with calcium carbonate and sodium carbonate in it (which are added as supplementary materials) is put into an alumina crucible, melted at $1,200{\sim}1,500^{\circ}C$ for 1 hr, and then annealed at $600^{\circ}C$ for 2 hrs. We fabricate a black colored glass. The properties of the glass are measured by XRD (X-ray diffractometry) and TG-DTA (thermogravimetry-differential thermal analysis). Glass samples manufactured at more than $1,300^{\circ}C$ with more than 60 % of refused coal ore are found by XRD to be non-crystalline in nature. In the case of the glass sample with 40 % of refused coal ore, from the sample melted at $1,200^{\circ}C$, a sodium aluminum phosphate peak, a disodium calcium silicate peak, and an unknown peak are observed. On the other hand, in the sample melted at $1,300^{\circ}C$, only the sodium aluminum phosphate peak and unknown peak are observed. And, peak changes that affect crystallization of the glass according to melting temperature are found. Therefore, it is concluded that glass with refused coal ore has good melting conditions at more than $1,200^{\circ}C$ and so can be applied to the construction field for materials such as glass tile, foamed glass panels, etc.