• Title/Summary/Keyword: sodium activator

Search Result 115, Processing Time 0.018 seconds

Mechanical Properties of Alkali-Activated Slag-Based Concrete Using Lightweight Aggregates (경량골재를 사용한 알칼리 활성 슬래그 콘크리트의 역학적 특성)

  • Yang, Keun-Hyeok;Oh, Seung-Jin;Song, Jin-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.405-412
    • /
    • 2008
  • Six alkali-activated (AA) concrete mixes were tested to explore the significance and limitations of developing an environmental friendly concrete. Ground granulated blast-furnace slag and powder typed sodium silicate were selected as source material and an alkaline activator, respectively. The main parameter investigated was the replacement level of lightweight fine aggregate to the natural sand. Workability and mechanical properties of lightweight AA concrete were measured: the variation of slump with time, the rate of compressive strength development, the splitting tensile strength, the moduli of rupture and elasticity, the stress-strain relationship, the bond resistance and shrinkage strain. Test results showed that the compressive strength of lightweight AA concrete sharply decreased when the replacement level of lightweight fine aggregate exceeded 30%. In particular, the increase in the discontinuous grading of lightweight aggregate resulted in the deterioration of the mechanical properties of concrete tested. The measured properties of lightweight AA concrete were also compared, wherever possible, with the results obtained from the design equations specified in ACI 318-05 or EC 2, depending on the relevance, and the results predicted from the empirical equations proposed by Slate et al. for lightweight ordinary Portland cement concrete. The stress-strain curves of different concrete were compared with predictions obtained from the mathematical model proposed by Tasnimi. The measured mechanical properties of lightweight AA concrete generally showed little agreement with the predictions obtained from these equations.

Degradations of human immunoglobulins and hemoglobin by a 60 kDa cysteine proteinase of Trichomonas vaginalis (질편모충의 60 kDa 시스테인 단백분해효소의 인체 면역글로불린 및 헤모글로빈 분해능)

  • Duk-Young MIN;Keun-Hee Hyun;Jae-Sook Ryu;Myoung-Hee AHN;Myung-Hwan CHO
    • Parasites, Hosts and Diseases
    • /
    • v.36 no.4
    • /
    • pp.261-268
    • /
    • 1998
  • The present study was undertaken to investigate the role of cysteine proteinase of Trichomonas vaginalis in escaping from host defense mechanism. A cysteine proteinase of T. vaginalis was purified by affinity chromatography and gel filtration. Optimum pH for the purified proteinase activity was 6.0. The proteinase was inhibited by cysteine and serine proteinase inhibitors such as E-64, NEM, IAA, leupeptin. TPCK and TLCK, and also by $Hg^{2+}$, but not affected by serine-, metallo-, and aspartic proteinase inhibitors such as PMSF, EDTA and pepstatin A. However, it was activated by the cysteine proteinase activator, DTT. The molecular weight of a purified proteinase was 62 kDa on gel filtration and 60 kDa on SDS-PAGE. Interestingly, the purified proteinase was able to degrade serum IgA, secretory IgA, and serum IgG in time- and dose-dependent manners. In addition, the enzyme also degraded hemoglobin in a dose-dependent manner. These results suggest that the acidic cysteine proteinase of T. vaginalis may play a dual role for parasite survival in conferring escape from host humoral defense by degradation of immunoglobulins, and in supplying nutrients to parasites by degradation of hemoglobin.

  • PDF

α1-adrenoceptor stimulation increases intracellular pH and Na+ via Na+-H+ exchange in guinea pig papillary muscle (기니픽 유두근에서 α1-adrenoceptor 자극에 의한 세포내 pH와 Na+ 증가는 Na+-H+ 교환기를 경유)

  • Kim, Jin-sang
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.2
    • /
    • pp.229-236
    • /
    • 1995
  • The effect of ${\alpha}_1$-adrenoceptor(${\alpha}_1$-AR) stimulation on intracellular pH($pH_i$), $Na^+$ activity($a_{Na}{^i}$) and contractility were investigated in isolated papillary muscles of euthyroid or hyperthyroid guinea pig with conventional microelectrode, $Na^+$ or $H^+$-selective microelectrodes, and tension transducer. Stimulation of the ${\alpha}_1$-AR by phenylephrine produced a decrease in $a_{Na}{^i}$ in euthyroid preparations. This decrease in $a_{Na}{^i}$ was abolished in presence of PKC activator, phorbol dibutyrate, and increased contrary to decrease. Phenylephrine also increased $a_{Na}{^i}$ in hyperthyroid ones. However, phenylrephtine produced an increase in $pH_i$ in both euthyroid and hyperthyroid ones. These changes were blocked by prazosin, an antagonist of ${\alpha}_1$-AR. These findings suggest that the changes in $a_{Na}{^i}$ and $pH_i$ are mediated by a stimulation of $Na^+-H^+$ exchange via ${\alpha}_1$-AR stimulation. This study focused on the increase in $a_{Na}{^i}$, $pH_i$ and contractility. The increase in $pH_i$ was blocked by amiloride or EIPA, $Na^+-H^+$ exchange inhibitors. Therefore, the increase in $a_{Na}{^i}$ and $pH_i$ mediated by ${\alpha}_1$-AR appeared to be due to an influx of $Na^+$ and a reduction of $H^+$ through $Na^+-H^+$ exchange. This study also revealed that the increase in $pH_i$ and $a_{Na}{^i}$ might be related to the sustained positive inotropic response. The $a_{Na}{^i}$ increase may contribute to the intracellular $Ca^{2+}$ through the $Na^+-Ca^{2+}$ exchange, and the $pH_i$ increase could cause an increase in the $Ca^{2+}$ sensitivity of myofilaments and may augment the ${\alpha}_1$-AR-mediated positive inotropic response.

  • PDF

A Study on Early Age Properties of Alkali Activated Slag Mortar According to Water/Binder Ratio (물-결합재비에 따른 알칼리 활성 슬래그 모르타르의 초기 재령 특성에 관한 연구)

  • Oh, Sang-Hyuk;Kim, Dae-Wang;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.63-69
    • /
    • 2012
  • Recently, the cement industries brought very severe environment problems such as resource depletion and global warming with massive carbon dioxide during its production. The number of cases using industrial by-products such as the ground granulated blast furnace slag (GGBFS) in concrete mixtures is increasing to resolve the environmental issue. GGBFS is mainly used in the range between 20 to 50% to replace cement, but nowadays lots of researches are carried out to develop the alkali-activated slag (AAS) concrete with no cement. In this study, the early age properties of alkali activated slag (AAS) mortar are investigated to obtain the fundamental data for AAS concrete application to structural members. The experimental variables were the water-binder ratios of 0.3, 0.4, and 0.5 and NaOH as the alkali activator of 4%, 8%, and 12% by the mass of GGBFS, and compressive strength, flow, setting time, and ultrasonic pulse velocity of AAS mortars were measured and analyzed. It is found from the test results that as the normal concrete the lower W/B, the higher compressive strength. However, superplasticizer has to be used for producing high strength AAS concrete because the workability of AAS mortar are significantly lowered.

  • PDF

The Fundamental Study of Strength and Drying Shrinkage on Alkali-activated Slag Cement Mortar with Different Entering Point of Fine Aggregate (잔골재의 투입시점에 따른 알칼리 활성화 슬래그 모르타르의 강도와 건조수축에 대한 기초적 연구)

  • Kim, Tae-Wan;Eom, Jang-Sub;Seo, Ki-Young;Park, Hyun-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.117-125
    • /
    • 2014
  • This paper examines the fundamental properties of alkali-activated slag cement (AASC) activated by sodium hydroxide (NaOH). The water to binder (W/B) ratio was 0.4 and 0.5. And concentration of activator were 2M and 4M. Five mix design of each W/B ratios was considered. The N0 mixture was KS L 5109 method and N1~N4 were varied in different mixing time, mix step and entering points of fine aggregate. Test results clearly showed that the flow value, strength and drying shrinkage development of AASC were significantly dependent on the entering point of fine aggregate. The flow value tended to decreases with delaying entering point of fine aggregate. The compressive strength and flexural strength increases with delaying entering point. Moreover, the XRD analysis confirmed that there were sustain these results. The drying shrinkage increases with delaying entering point of fine aggregate. Futhermore, a modified mixing method incorporating all hereby experimentally derived parameters, is proposed to improvement the physical properties of AASC.