• 제목/요약/키워드: socket bridge pier

검색결과 6건 처리시간 0.021초

Test for the influence of socket connection structure on the seismic performance of RC prefabricated bridge piers

  • Yan Han;Shicong Ding;Yuxiang Qin;Shilong Zhang
    • Earthquakes and Structures
    • /
    • 제25권2호
    • /
    • pp.89-97
    • /
    • 2023
  • In order to obtain the impact of socket connection interface forms and socket gap sizes on the seismic performance of reinforced concrete (RC) socket prefabricated bridge piers, quasi-static tests for three socket prefabricated piers with different column-foundation connection interface forms and reserved socket gap sizes, as well as to the corresponding cast-in-situ reinforced concrete piers, were carried out. The influence of socket connection structure on various seismic performance indexes of socket prefabricated piers was studied by comparing and analyzing the hysteresis curve and skeleton curve obtained through the experiment. Results showed that the ultimate failure mode of the socket prefabricated pier with circumferential corrugated treatment at the connection interface was the closest to that of the monolithic pier, the maximum bearing capacity was slightly less than that of the cast-in-situ pier but larger than that of the socket pier with roughened connection interface, and the displacement ductility and accumulated energy consumption capacity were smaller than those of socket piers with roughened connection interface. The connection interface treatment form had less influence on the residual deformation of socket prefabricated bridge piers. With the increase in the reserved socket gap size between the precast pier column and the precast foundation, the bearing capacity of the prefabricated socket bridge pier component, as well as the ductility and residual displacement of the component, would be reduced and had unfavorable effect on the energy dissipation property of the bridge pier component.

Seismic performance of precast assembled bridge piers with hybrid connection

  • Shuang, Zou;Heisha, Wenliuhan;Yanhui, Liu;Zhipeng, Zhai;Chongbin, Zhang
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.407-417
    • /
    • 2023
  • Precast assembled bridge piers with hybrid connection (PASP) use both tendons and socket connections. To study the seismic performance of PASP, a full-scale in-situ test was performed based on an actual bridge project. The elastic-plastic fiber model of PASP was established using finite element software, and numerical analyses were performed to study the influence of prestress degree and socket depth on the PASP seismic performance. The results show that the typical failure mode of PASP under horizontal load is bending failure dominated by concrete cracking at the joint between the column and cushion cap. The cracking of the pier concrete and opening of joints depend on the prestress degree and socket depth. The prestressing tendons and socket connection can provide enough ductility, strength, restoration capability, and bending strength under small horizontal displacements. Although the bearing capacity and post yield stiffness of the pier can be improved to some extent by increasing the prestressing force, ductility is reduced, and residual deformation is increased. Overall, there are reasonable minimum socket depths to ensure the reliability of the socket connection.

Seismic behavior and design method of socket self-centering bridge pier with hybrid energy dissipation system

  • Guo, Mengqiang;Men, Jinjie;Fan, Dongxin;Shen, Yanli
    • Earthquakes and Structures
    • /
    • 제23권3호
    • /
    • pp.271-282
    • /
    • 2022
  • Seismic resisting self-centering bridge piers with high energy dissipation and negligible residual displacement after an earthquake event are focus topics of current structural engineering. The energy dissipation components of typical bridge piers are often relatively single; and exhibit a certain level of damage under earthquakes, leading to large residual displacements and low cumulative energy dissipation. In this paper, a novel socket self-centering bridge pier with a hybrid energy dissipation system is proposed. The seismic resilience of bridge piers can be improved through the rational design of annular grooves and rubber cushions. The seismic response was evaluated through the finite element method. The effects of rubber cushion thickness, annular groove depth, axial compression ratio, and lateral strength contribution ratio of rubber cushion on the seismic behavior of bridge piers are systematically studied. The results show that the annular groove depth has the greatest influence on the seismic performance of the bridge pier. Especially, the lateral strength contribution ratio of the rubber cushion mainly depends on the depth of the annular groove. The axial compression ratio has a significant effect on the ultimate bearing capacity. Finally, the seismic design method is proposed according to the influence of the above research parameters on the seismic performance of bridge piers, and the method is validated by an example. It is suggested that the range of lateral strength contribution ratio of rubber cushion is 0.028 ~ 0.053.

국내 암반에 근입된 현장타설말뚝의 설계기준 수립 (Design criteria of rock socked pile in South Korea)

  • 이풍희;김종흔;전경수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 기초기술학술발표회
    • /
    • pp.31-42
    • /
    • 2002
  • The Design criteria are different from one another due to the different engineering properties of rock in the every nation. Most of the test results of the rock-socketed piers were loaded two times of the design load capacities because they would be used in the foundation of the bridge or the building. So we have much difficulties in study of the load capacities of the rock-socketed piers by the test result in Korea. When we design the rock-socket piers, every designer uses the different formula, and makes different results. Recently the demand of the large bridges and the huge buildings has been increased. The adequate design criterion of the rock-socketed pier is urgently needed to design them reasonable. In this paper we analyzed the various design criteria and proposed the adequate design criterion which is based on the test results of the rock-socked piers in Korea.

  • PDF

보수된 대구경 암반 소켈강관말뚝의 연직지지력에 관한 사례연구 (Case Study on the Vertical Capacity of the Repaired Large Diameter Rock-Socketed Stool Pipe Pile)

  • 최용규;김승종;김병희;이광욱;김상일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.185-192
    • /
    • 1999
  • It had found that, as a result of cross-hole tonic logging test, concrete was not filled partially within the bottom 2.0 m of the large diameter (Ø= 2,500mm) rock socketed pile, MP20-P11(socket diameter (Ø= 2,200mm), which was a pile among piles group supporting a pier of Kwangan Grand Bridge. The pile was repaired by the combined cement grout injected through the pipes for the cross-hole sonic logging test and the bore holes for core samples. A month after the cement grouting, repairing was checked by coring and cross-hole sonic logging then 3 times of grouting and 2 times of coring were, in turns, peformed, then repairing was completed successfully. The vertical compressive capacity of the repaired large diameter socketed pile was evaluated by several formulas and software ROCKET, and was more conservative than design load (1,882 ton) of MP20-P11. It is expected that, in the case of the battered socketed piles, it could be more reasonable to analyze the behaviors of a battered pile using 3-D model. A 3-D analysis will be peformed in the future study.

  • PDF

지진에 의한 교량의 탄성받침장치 손상 원인 규명 (Identification of Failure Cause for Elastomeric Bearing in Bridge by Earthquakes)

  • 서영득;최형석;김인태;김정한;정영수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권6호
    • /
    • pp.19-26
    • /
    • 2021
  • 교량 받침장치부는 상부구조의 수직하중을 지지하여 하부구조에 전달하고, 교량의 붕괴사고를 방지하는 역할을 한다. 하지만, 포항지진에 의하여 총 12개 도로교량의 받침장치 몰탈 파손, 받침장치 파손 및 쐐기 손상이 보고되었다. 본 연구에서는 지진시 교량 받침장치부의 구조 시스템 특성을 고려하여 교각의 코핑부와 무수축몰탈을 포함한 면진받침 장치 실험체의 전단 거동특성 및 손상모드를 평가하였다. 받침장치 쐐기에 대한 영향을 확인하기 위하여 쐐기 설치 유무를 변수로 설정하였으며, 압축-전단 실험을 실시하여 면진장치의 전단 거동특성과 손상모드를 확인하였다. 또한 유한요소해석을 통하여 받침장치의 거동특성 및 각 구성요소별 손상원인을 분석하였다. 실험결과, 쐐기의 충돌 및 손상 발생 이후 급격한 하중변화가 발생하였으며, 받침장치와 무수축몰탈 경계부를 따라 균열이 발생하였다. 쐐기 유무에 따른 쐐기, 앵커 소켓 및 무수축볼탈의 응력거동을 비교함으로써 지진시 교량받침장치부의 손상원인을 규명하였다.