• Title/Summary/Keyword: social media network

Search Result 679, Processing Time 0.026 seconds

A Study on the Analysis of Park User Experiences in Phase 1 and 2 Korea's New Towns with Blog Text Data (블로그 텍스트 데이터를 활용한 1, 2기 신도시 공원의 이용자 경험 분석 연구)

  • Sim, Jooyoung;Lee, Minsoo;Choi, Hyeyoung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.3
    • /
    • pp.89-102
    • /
    • 2024
  • This study aims to examine the characteristics of the user experience of New Town neighborhood parks and explore issues that diversify the experience of the parks. In order to quantitatively analyze a large amount of park visitors' experiences, text-based Naver blog reviews were collected and analyzed. Among the Phase 1 and 2 New Towns, the parks with the highest user experience postings were selected for each city as the target of analysis. Blog text data was collected from May 20, 2003, to May 31, 2022, and analysis was conducted targeting Ilsan Lake Park, Bundang Yuldong Park, Gwanggyo Lake Park, and Dongtan Lake Park. The findings revealed that all four parks were used for everyday relaxation and recreation. Second, the analysis underscores park's diverse user groups. Third, the programs for parks nearby were also related to park usage. Fourth, the words within the top 20 rankings represented distinctive park elements or content/programs specific to each park. Lastly, the results of the network analysis delineated four overarching types of park users and the networks of four park user types appeared differently depending on the park. This study provides two implications. First, in addition to the naturalistic characteristics, the differentiation of each park's unique facilities and programs greatly improves public awareness and enriches the individual park experience. Second, if analysis of the context surrounding the park based on spatial information is performed in addition to text analysis, the accuracy of interpretation of text data analysis results could be improved. The results of this study can be used in the planning and designing of parks and greenspaces in the Phase 3 New Towns currently in progress.

Literature Review of AI Hallucination Research Since the Advent of ChatGPT: Focusing on Papers from arXiv (챗GPT 등장 이후 인공지능 환각 연구의 문헌 검토: 아카이브(arXiv)의 논문을 중심으로)

  • Park, Dae-Min;Lee, Han-Jong
    • Informatization Policy
    • /
    • v.31 no.2
    • /
    • pp.3-38
    • /
    • 2024
  • Hallucination is a significant barrier to the utilization of large-scale language models or multimodal models. In this study, we collected 654 computer science papers with "hallucination" in the abstract from arXiv from December 2022 to January 2024 following the advent of Chat GPT and conducted frequency analysis, knowledge network analysis, and literature review to explore the latest trends in hallucination research. The results showed that research in the fields of "Computation and Language," "Artificial Intelligence," "Computer Vision and Pattern Recognition," and "Machine Learning" were active. We then analyzed the research trends in the four major fields by focusing on the main authors and dividing them into data, hallucination detection, and hallucination mitigation. The main research trends included hallucination mitigation through supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF), inference enhancement via "chain of thought" (CoT), and growing interest in hallucination mitigation within the domain of multimodal AI. This study provides insights into the latest developments in hallucination research through a technology-oriented literature review. This study is expected to help subsequent research in both engineering and humanities and social sciences fields by understanding the latest trends in hallucination research.

A study on detective story authors' style differentiation and style structure based on Text Mining (텍스트 마이닝 기법을 활용한 고전 추리 소설 작가 간 문체적 차이와 문체 구조에 대한 연구)

  • Moon, Seok Hyung;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.89-115
    • /
    • 2019
  • This study was conducted to present the stylistic differences between Arthur Conan Doyle and Agatha Christie, famous as writers of classical mystery novels, through data analysis, and further to present the analytical methodology of the study of style based on text mining. The reason why we chose mystery novels for our research is because the unique devices that exist in classical mystery novels have strong stylistic characteristics, and furthermore, by choosing Arthur Conan Doyle and Agatha Christie, who are also famous to the general reader, as subjects of analysis, so that people who are unfamiliar with the research can be familiar with them. The primary objective of this study is to identify how the differences exist within the text and to interpret the effects of these differences on the reader. Accordingly, in addition to events and characters, which are key elements of mystery novels, the writer's grammatical style of writing was defined in style and attempted to analyze it. Two series and four books were selected by each writer, and the text was divided into sentences to secure data. After measuring and granting the emotional score according to each sentence, the emotions of the page progress were visualized as a graph, and the trend of the event progress in the novel was identified under eight themes by applying Topic modeling according to the page. By organizing co-occurrence matrices and performing network analysis, we were able to visually see changes in relationships between people as events progressed. In addition, the entire sentence was divided into a grammatical system based on a total of six types of writing style to identify differences between writers and between works. This enabled us to identify not only the general grammatical writing style of the author, but also the inherent stylistic characteristics in their unconsciousness, and to interpret the effects of these characteristics on the reader. This series of research processes can help to understand the context of the entire text based on a defined understanding of the style, and furthermore, by integrating previously individually conducted stylistic studies. This prior understanding can also contribute to discovering and clarifying the existence of text in unstructured data, including online text. This could help enable more accurate recognition of emotions and delivery of commands on an interactive artificial intelligence platform that currently converts voice into natural language. In the face of increasing attempts to analyze online texts, including New Media, in many ways and discover social phenomena and managerial values, it is expected to contribute to more meaningful online text analysis and semantic interpretation through the links to these studies. However, the fact that the analysis data used in this study are two or four books by author can be considered as a limitation in that the data analysis was not attempted in sufficient quantities. The application of the writing characteristics applied to the Korean text even though it was an English text also could be limitation. The more diverse stylistic characteristics were limited to six, and the less likely interpretation was also considered as a limitation. In addition, it is also regrettable that the research was conducted by analyzing classical mystery novels rather than text that is commonly used today, and that various classical mystery novel writers were not compared. Subsequent research will attempt to increase the diversity of interpretations by taking into account a wider variety of grammatical systems and stylistic structures and will also be applied to the current frequently used online text analysis to assess the potential for interpretation. It is expected that this will enable the interpretation and definition of the specific structure of the style and that various usability can be considered.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (비정형 텍스트 분석을 활용한 이슈의 동적 변이과정 고찰)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Owing to the extensive use of Web media and the development of the IT industry, a large amount of data has been generated, shared, and stored. Nowadays, various types of unstructured data such as image, sound, video, and text are distributed through Web media. Therefore, many attempts have been made in recent years to discover new value through an analysis of these unstructured data. Among these types of unstructured data, text is recognized as the most representative method for users to express and share their opinions on the Web. In this sense, demand for obtaining new insights through text analysis is steadily increasing. Accordingly, text mining is increasingly being used for different purposes in various fields. In particular, issue tracking is being widely studied not only in the academic world but also in industries because it can be used to extract various issues from text such as news, (SocialNetworkServices) to analyze the trends of these issues. Conventionally, issue tracking is used to identify major issues sustained over a long period of time through topic modeling and to analyze the detailed distribution of documents involved in each issue. However, because conventional issue tracking assumes that the content composing each issue does not change throughout the entire tracking period, it cannot represent the dynamic mutation process of detailed issues that can be created, merged, divided, and deleted between these periods. Moreover, because only keywords that appear consistently throughout the entire period can be derived as issue keywords, concrete issue keywords such as "nuclear test" and "separated families" may be concealed by more general issue keywords such as "North Korea" in an analysis over a long period of time. This implies that many meaningful but short-lived issues cannot be discovered by conventional issue tracking. Note that detailed keywords are preferable to general keywords because the former can be clues for providing actionable strategies. To overcome these limitations, we performed an independent analysis on the documents of each detailed period. We generated an issue flow diagram based on the similarity of each issue between two consecutive periods. The issue transition pattern among categories was analyzed by using the category information of each document. In this study, we then applied the proposed methodology to a real case of 53,739 news articles. We derived an issue flow diagram from the articles. We then proposed the following useful application scenarios for the issue flow diagram presented in the experiment section. First, we can identify an issue that actively appears during a certain period and promptly disappears in the next period. Second, the preceding and following issues of a particular issue can be easily discovered from the issue flow diagram. This implies that our methodology can be used to discover the association between inter-period issues. Finally, an interesting pattern of one-way and two-way transitions was discovered by analyzing the transition patterns of issues through category analysis. Thus, we discovered that a pair of mutually similar categories induces two-way transitions. In contrast, one-way transitions can be recognized as an indicator that issues in a certain category tend to be influenced by other issues in another category. For practical application of the proposed methodology, high-quality word and stop word dictionaries need to be constructed. In addition, not only the number of documents but also additional meta-information such as the read counts, written time, and comments of documents should be analyzed. A rigorous performance evaluation or validation of the proposed methodology should be performed in future works.

Semi-supervised learning for sentiment analysis in mass social media (대용량 소셜 미디어 감성분석을 위한 반감독 학습 기법)

  • Hong, Sola;Chung, Yeounoh;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.482-488
    • /
    • 2014
  • This paper aims to analyze user's emotion automatically by analyzing Twitter, a representative social network service (SNS). In order to create sentiment analysis models by using machine learning techniques, sentiment labels that represent positive/negative emotions are required. However it is very expensive to obtain sentiment labels of tweets. So, in this paper, we propose a sentiment analysis model by using self-training technique in order to utilize "data without sentiment labels" as well as "data with sentiment labels". Self-training technique is that labels of "data without sentiment labels" is determined by utilizing "data with sentiment labels", and then updates models using together with "data with sentiment labels" and newly labeled data. This technique improves the sentiment analysis performance gradually. However, it has a problem that misclassifications of unlabeled data in an early stage affect the model updating through the whole learning process because labels of unlabeled data never changes once those are determined. Thus, labels of "data without sentiment labels" needs to be carefully determined. In this paper, in order to get high performance using self-training technique, we propose 3 policies for updating "data with sentiment labels" and conduct a comparative analysis. The first policy is to select data of which confidence is higher than a given threshold among newly labeled data. The second policy is to choose the same number of the positive and negative data in the newly labeled data in order to avoid the imbalanced class learning problem. The third policy is to choose newly labeled data less than a given maximum number in order to avoid the updates of large amount of data at a time for gradual model updates. Experiments are conducted using Stanford data set and the data set is classified into positive and negative. As a result, the learned model has a high performance than the learned models by using "data with sentiment labels" only and the self-training with a regular model update policy.

Improving Performance of Recommendation Systems Using Topic Modeling (사용자 관심 이슈 분석을 통한 추천시스템 성능 향상 방안)

  • Choi, Seongi;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.101-116
    • /
    • 2015
  • Recently, due to the development of smart devices and social media, vast amounts of information with the various forms were accumulated. Particularly, considerable research efforts are being directed towards analyzing unstructured big data to resolve various social problems. Accordingly, focus of data-driven decision-making is being moved from structured data analysis to unstructured one. Also, in the field of recommendation system, which is the typical area of data-driven decision-making, the need of using unstructured data has been steadily increased to improve system performance. Approaches to improve the performance of recommendation systems can be found in two aspects- improving algorithms and acquiring useful data with high quality. Traditionally, most efforts to improve the performance of recommendation system were made by the former approach, while the latter approach has not attracted much attention relatively. In this sense, efforts to utilize unstructured data from variable sources are very timely and necessary. Particularly, as the interests of users are directly connected with their needs, identifying the interests of the user through unstructured big data analysis can be a crew for improving performance of recommendation systems. In this sense, this study proposes the methodology of improving recommendation system by measuring interests of the user. Specially, this study proposes the method to quantify interests of the user by analyzing user's internet usage patterns, and to predict user's repurchase based upon the discovered preferences. There are two important modules in this study. The first module predicts repurchase probability of each category through analyzing users' purchase history. We include the first module to our research scope for comparing the accuracy of traditional purchase-based prediction model to our new model presented in the second module. This procedure extracts purchase history of users. The core part of our methodology is in the second module. This module extracts users' interests by analyzing news articles the users have read. The second module constructs a correspondence matrix between topics and news articles by performing topic modeling on real world news articles. And then, the module analyzes users' news access patterns and then constructs a correspondence matrix between articles and users. After that, by merging the results of the previous processes in the second module, we can obtain a correspondence matrix between users and topics. This matrix describes users' interests in a structured manner. Finally, by using the matrix, the second module builds a model for predicting repurchase probability of each category. In this paper, we also provide experimental results of our performance evaluation. The outline of data used our experiments is as follows. We acquired web transaction data of 5,000 panels from a company that is specialized to analyzing ranks of internet sites. At first we extracted 15,000 URLs of news articles published from July 2012 to June 2013 from the original data and we crawled main contents of the news articles. After that we selected 2,615 users who have read at least one of the extracted news articles. Among the 2,615 users, we discovered that the number of target users who purchase at least one items from our target shopping mall 'G' is 359. In the experiments, we analyzed purchase history and news access records of the 359 internet users. From the performance evaluation, we found that our prediction model using both users' interests and purchase history outperforms a prediction model using only users' purchase history from a view point of misclassification ratio. In detail, our model outperformed the traditional one in appliance, beauty, computer, culture, digital, fashion, and sports categories when artificial neural network based models were used. Similarly, our model outperformed the traditional one in beauty, computer, digital, fashion, food, and furniture categories when decision tree based models were used although the improvement is very small.

Professional Baseball Viewing Culture Survey According to Corona 19 using Social Network Big Data (소셜네트워크 빅데이터를 활용한 코로나 19에 따른 프로야구 관람문화조사)

  • Kim, Gi-Tak
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.6
    • /
    • pp.139-150
    • /
    • 2020
  • The data processing of this study focuses on the textom and social media words about three areas: 'Corona 19 and professional baseball', 'Corona 19 and professional baseball', and 'Corona 19 and professional sports' The data was collected and refined in a web environment and then processed in batch, and the Ucinet6 program was used to visualize it. Specifically, the web environment was collected using Naver, Daum, and Google's channels, and was summarized into 30 words through expert meetings among the extracted words and used in the final study. 30 extracted words were visualized through a matrix, and a CONCOR analysis was performed to identify clusters of similarity and commonality of words. As a result of analysis, the clusters related to Corona 19 and Pro Baseball were composed of one central cluster and five peripheral clusters, and it was found that the contents related to the opening of professional baseball according to the corona 19 wave were mainly searched. The cluster related to Corona 19 and unrelated to professional baseball consisted of one central cluster and five peripheral clusters, and it was found that the keyword of the position of professional baseball related to the professional baseball game according to Corona 19 was mainly searched. Corona 19 and the cluster related to professional sports consisted of one central cluster and five peripheral clusters, and it was found that the keywords related to the start of professional sports according to the aftermath of Corona 19 were mainly searched.

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.

Perceptional Change of a New Product, DMB Phone

  • Kim, Ju-Young;Ko, Deok-Im
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.3
    • /
    • pp.59-88
    • /
    • 2008
  • Digital Convergence means integration between industry, technology, and contents, and in marketing, it usually comes with creation of new types of product and service under the base of digital technology as digitalization progress in electro-communication industries including telecommunication, home appliance, and computer industries. One can see digital convergence not only in instruments such as PC, AV appliances, cellular phone, but also in contents, network, service that are required in production, modification, distribution, re-production of information. Convergence in contents started around 1990. Convergence in network and service begins as broadcasting and telecommunication integrates and DMB(digital multimedia broadcasting), born in May, 2005 is the symbolic icon in this trend. There are some positive and negative expectations about DMB. The reason why two opposite expectations exist is that DMB does not come out from customer's need but from technology development. Therefore, customers might have hard time to interpret the real meaning of DMB. Time is quite critical to a high tech product, like DMB because another product with same function from different technology can replace the existing product within short period of time. If DMB does not positioning well to customer's mind quickly, another products like Wibro, IPTV, or HSPDA could replace it before it even spreads out. Therefore, positioning strategy is critical for success of DMB product. To make correct positioning strategy, one needs to understand how consumer interprets DMB and how consumer's interpretation can be changed via communication strategy. In this study, we try to investigate how consumer perceives a new product, like DMB and how AD strategy change consumer's perception. More specifically, the paper segment consumers into sub-groups based on their DMB perceptions and compare their characteristics in order to understand how they perceive DMB. And, expose them different printed ADs that have messages guiding consumer think DMB in specific ways, either cellular phone or personal TV. Research Question 1: Segment consumers according to perceptions about DMB and compare characteristics of segmentations. Research Question 2: Compare perceptions about DMB after AD that induces categorization of DMB in direction for each segment. If one understand and predict a direction in which consumer perceive a new product, firm can select target customers easily. We segment consumers according to their perception and analyze characteristics in order to find some variables that can influence perceptions, like prior experience, usage, or habit. And then, marketing people can use this variables to identify target customers and predict their perceptions. If one knows how customer's perception is changed via AD message, communication strategy could be constructed properly. Specially, information from segmented customers helps to develop efficient AD strategy for segment who has prior perception. Research framework consists of two measurements and one treatment, O1 X O2. First observation is for collecting information about consumer's perception and their characteristics. Based on first observation, the paper segment consumers into two groups, one group perceives DMB similar to Cellular phone and the other group perceives DMB similar to TV. And compare characteristics of two segments in order to find reason why they perceive DMB differently. Next, we expose two kinds of AD to subjects. One AD describes DMB as Cellular phone and the other Ad describes DMB as personal TV. When two ADs are exposed to subjects, consumers don't know their prior perception of DMB, in other words, which subject belongs 'similar-to-Cellular phone' segment or 'similar-to-TV' segment? However, we analyze the AD's effect differently for each segment. In research design, final observation is for investigating AD effect. Perception before AD is compared with perception after AD. Comparisons are made for each segment and for each AD. For the segment who perceives DMB similar to TV, AD that describes DMB as cellular phone could change the prior perception. And AD that describes DMB as personal TV, could enforce the prior perception. For data collection, subjects are selected from undergraduate students because they have basic knowledge about most digital equipments and have open attitude about a new product and media. Total number of subjects is 240. In order to measure perception about DMB, we use indirect measurement, comparison with other similar digital products. To select similar digital products, we pre-survey students and then finally select PDA, Car-TV, Cellular Phone, MP3 player, TV, and PSP. Quasi experiment is done at several classes under instructor's allowance. After brief introduction, prior knowledge, awareness, and usage about DMB as well as other digital instruments is asked and their similarities and perceived characteristics are measured. And then, two kinds of manipulated color-printed AD are distributed and similarities and perceived characteristics for DMB are re-measured. Finally purchase intension, AD attitude, manipulation check, and demographic variables are asked. Subjects are given small gift for participation. Stimuli are color-printed advertising. Their actual size is A4 and made after several pre-test from AD professionals and students. As results, consumers are segmented into two subgroups based on their perceptions of DMB. Similarity measure between DMB and cellular phone and similarity measure between DMB and TV are used to classify consumers. If subject whose first measure is less than the second measure, she is classified into segment A and segment A is characterized as they perceive DMB like TV. Otherwise, they are classified as segment B, who perceives DMB like cellular phone. Discriminant analysis on these groups with their characteristics of usage and attitude shows that Segment A knows much about DMB and uses a lot of digital instrument. Segment B, who thinks DMB as cellular phone doesn't know well about DMB and not familiar with other digital instruments. So, consumers with higher knowledge perceive DMB similar to TV because launching DMB advertising lead consumer think DMB as TV. Consumers with less interest on digital products don't know well about DMB AD and then think DMB as cellular phone. In order to investigate perceptions of DMB as well as other digital instruments, we apply Proxscal analysis, Multidimensional Scaling technique at SPSS statistical package. At first step, subjects are presented 21 pairs of 7 digital instruments and evaluate similarity judgments on 7 point scale. And for each segment, their similarity judgments are averaged and similarity matrix is made. Secondly, Proxscal analysis of segment A and B are done. At third stage, get similarity judgment between DMB and other digital instruments after AD exposure. Lastly, similarity judgments of group A-1, A-2, B-1, and B-2 are named as 'after DMB' and put them into matrix made at the first stage. Then apply Proxscal analysis on these matrixes and check the positional difference of DMB and after DMB. The results show that map of segment A, who perceives DMB similar as TV, shows that DMB position closer to TV than to Cellular phone as expected. Map of segment B, who perceive DMB similar as cellular phone shows that DMB position closer to Cellular phone than to TV as expected. Stress value and R-square is acceptable. And, change results after stimuli, manipulated Advertising show that AD makes DMB perception bent toward Cellular phone when Cellular phone-like AD is exposed, and that DMB positioning move towards Car-TV which is more personalized one when TV-like AD is exposed. It is true for both segment, A and B, consistently. Furthermore, the paper apply correspondence analysis to the same data and find almost the same results. The paper answers two main research questions. The first one is that perception about a new product is made mainly from prior experience. And the second one is that AD is effective in changing and enforcing perception. In addition to above, we extend perception change to purchase intention. Purchase intention is high when AD enforces original perception. AD that shows DMB like TV makes worst intention. This paper has limitations and issues to be pursed in near future. Methodologically, current methodology can't provide statistical test on the perceptual change, since classical MDS models, like Proxscal and correspondence analysis are not probability models. So, a new probability MDS model for testing hypothesis about configuration needs to be developed. Next, advertising message needs to be developed more rigorously from theoretical and managerial perspective. Also experimental procedure could be improved for more realistic data collection. For example, web-based experiment and real product stimuli and multimedia presentation could be employed. Or, one can display products together in simulated shop. In addition, demand and social desirability threats of internal validity could influence on the results. In order to handle the threats, results of the model-intended advertising and other "pseudo" advertising could be compared. Furthermore, one can try various level of innovativeness in order to check whether it make any different results (cf. Moon 2006). In addition, if one can create hypothetical product that is really innovative and new for research, it helps to make a vacant impression status and then to study how to form impression in more rigorous way.

  • PDF