• Title/Summary/Keyword: social media big data

Search Result 288, Processing Time 0.026 seconds

Keyword Visualization based on the number of occurrences (출현회수에 따른 키워드 가시화 연구)

  • Lee, HyunChang;Shin, SeongYoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.484-485
    • /
    • 2019
  • Recently, interest in data analysis has increased as the importance of big data becomes more important. Particularly, as social media data and academic research communities become more active and important, analysis becomes more important. In this study, co-word analysis was conducted through altmetrics articles collected from 2012 to 2017. In this way, the co-occurrence network map is derived from the keyword and the emphasized keyword is extracted.

  • PDF

Keyword Visualization based on the Number of Occurrences (키워드 빈도수에 따른 시각화 연구)

  • Lee, HyunChang;Shin, SeongYoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.565-566
    • /
    • 2021
  • Recently, interest in data analysis has increased as the importance of big data becomes more important. Particularly, as social media data and academic research communities become more active and important, analysis becomes more important. In this study, co-word analysis was conducted through altmetrics articles collected from 2012 to 2017. In this way, the co-occurrence network map is derived from the keyword and the emphasized keyword is extracted.

  • PDF

A Gap Analysis Using Spatial Data and Social Media Big Data Analysis Results of Island Tourism Resources for Sustainable Resource Management (지속가능한 자원관리를 위한 섬 지역 관광자원의 공간정보와 소셜미디어 빅데이터 분석 결과를 활용한 격차분석)

  • Lee, Sung-Hee;Lee, Ju-Kyung;Son, Yong-Hoon;Kim, Young-Jin
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.2
    • /
    • pp.13-24
    • /
    • 2024
  • This study conducts an analysis of social media big data pertaining to island tourism resources, aiming to discern the diverse forms and categories of island tourism favored by consumers, ascertain predominant resources, and facilitate objective decision-making grounded in scientific methodologies. To achieve this objective, an examination of blog posts published on Naver from 2022 to 2023 was undertaken, utilizing keywords such as 'Island tourism', 'Island travel', and 'Island backpacking' as focal points for analysis. Text mining techniques were applied to sift through the data. Among the resources identified, the port emerged as a significant asset, serving as a pivotal conduit linking the island and mainland and holding substantial importance as a focal point and resource for tourist access to the island. Furthermore, an analysis of the disparity between existing island tourism resources and those acknowledged by tourists who actively engage with and appreciate island destinations led to the identification of 186 newly emerging resources. These nascent resources predominantly clustered within five regions: Incheon Metropolitan City, Tongyeong/Geoje City, Jeju Island, Ulleung-gun, and Shinan-gun. A scrutiny of these resources, categorized according to the tourism resource classification system, revealed a notable presence of new resources, chiefly in the domains of 'rural landscape', 'tourist resort/training facility', 'transportation facility', and 'natural resource'. Notably, many of these emerging resources were previously overlooked in official management targets or resource inventories pertaining to existing island tourism resources. Noteworthy examples include ports, beaches, and mountains, which, despite constituting a substantial proportion of the newly identified tourist resources, were not accorded prominence in spatial information datasets. This study holds significance in its ability to unearth novel tourism resources recognized by island tourism consumers through a gap analysis approach that juxtaposes the existing status of island tourism resource data with techniques utilizing social media big data. Furthermore, the methodology delineated in this research offers a valuable framework for domestic local governments to gauge local tourism demand and embark on initiatives for tourism development or regional revitalization.

Study on the Application Methods of Big Data at a Corporation -Cases of A and Y corporation Big Data System Projects- (기업의 빅데이터 적용방안 연구 -A사, Y사 빅데이터 시스템 적용 사례-)

  • Lee, Jae Sung;Hong, Sung Chan
    • Journal of Internet Computing and Services
    • /
    • v.15 no.1
    • /
    • pp.103-112
    • /
    • 2014
  • In recent years, the rapid diffusion of smart devices and growth of internet usage and social media has led to a constant production of huge amount of valuable data set that includes personal information, buying patterns, location information and other things. IT and Production Infrastructure has also started to produce its own data with the vitalization of M2M (Machine-to-Machine) and IoT (Internet of Things). This analysis study researches the applicable effects of Structured and Unstructured Big Data in various business circumstances, and purposes to find out the value creation method for a corporation through the Structured and Unstructured Big Data case studies. The result demonstrates that corporations looking for the optimized big data utilization plan could maximize their creative values by utilizing Unstructured and Structured Big Data generated interior and exterior of corporations.

Comparison of responses to issues in SNS and Traditional Media using Text Mining -Focusing on the Termination of Korea-Japan General Security of Military Information Agreement(GSOMIA)- (텍스트 마이닝을 이용한 SNS와 언론의 이슈에 대한 반응 비교 -"한일군사정보보호협정(GSOMIA) 종료"를 중심으로-)

  • Lee, Su Ryeon;Choi, Eun Jung
    • Journal of Digital Convergence
    • /
    • v.18 no.2
    • /
    • pp.277-284
    • /
    • 2020
  • Text mining is a representative method of big data analysis that extracts meaningful information from unstructured and large amounts of text data. Social media such as Twitter generates hundreds of thousands of data per second and acts as a one-person media that instantly and directly expresses public opinions and ideas. The traditional media are delivering informations, criticizing society, and forming public opinions. For this, we compare the responses of SNS with the responses of media on the issue of the termination of the Korea-Japan GSOMIA (General Security of Military Information Agreement), one of the domestic issues in the second half of 2019. Data collected from 201,728 tweets and 20,698 newspaper articles were analyzed by sentiment analysis, association keyword analysis, and cluster analysis. As a result, SNS tends to respond positively to this issue, and the media tends to react negatively. In association keyword analysis, SNS shows positive views on domestic issues such as "destruction, decision, we," while the media shows negative views on external issues such as "disappointment, regret, concern". SNS is faster and more powerful than media when studying or creating social trends and opinions, rather than the function of information delivery. This can complement the role of the media that reflects public perception.

Unstructured Data Processing Using Keyword-Based Topic-Oriented Analysis (키워드 기반 주제중심 분석을 이용한 비정형데이터 처리)

  • Ko, Myung-Sook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.521-526
    • /
    • 2017
  • Data format of Big data is diverse and vast, and its generation speed is very fast, requiring new management and analysis methods, not traditional data processing methods. Textual mining techniques can be used to extract useful information from unstructured text written in human language in online documents on social networks. Identifying trends in the message of politics, economy, and culture left behind in social media is a factor in understanding what topics they are interested in. In this study, text mining was performed on online news related to a given keyword using topic - oriented analysis technique. We use Latent Dirichiet Allocation (LDA) to extract information from web documents and analyze which subjects are interested in a given keyword, and which topics are related to which core values are related.

Online Music Distribution Strategy to Develop the future Hallyu Music Industry

  • Woo-Jun JANG;Min-Ho CHANG
    • Journal of Distribution Science
    • /
    • v.22 no.6
    • /
    • pp.115-122
    • /
    • 2024
  • Purpose: The main aim of this study is to analyze and suggest new online music distribution models targeted to facilitate the development of the Korean Wave (Hallyu) music market in all locations of the world. This study is conducted through a close analysis of the prevailing distribution models, the unique challenges of the K-pop market, and the trends in new technologies. Research design, data and methodology: To address the issue of how the online music distribution market could be domesticated for the Korean music industry, a systematic review of the previous studies was conducted. The use of the PRISMA approach was followed so that an accurate and transparent method for choosing the studies is ensured. Results: According to the investigation of literature analysis, the online distribution strategy may consist of four key plannings as follows, 1. Leveraging Social Media and User-Generated Content Platforms, 2. Embracing Immersive and Interactive Experiences, 3. Fostering Direct-to-Fan Connections and Monetization, 4. Harnessing Artificial Intelligence and Big Data Analytics. Conclusions: Finally, collaboration and strategic partnerships will be vital. The Korean music companies should seek to cooperate with the technology companies, social media platforms, and the global music streaming services so that they can grow their market, acquire new technologies, and to better their online distribution strategies.

Welfare Policy Visualization Analysis using Big Data -Chungcheong- (빅데이터를 활용한 복지정책 시각화분석 -충청도 중심으로-)

  • Dae-Yu Kim;Won-Shik Na
    • Advanced Industrial SCIence
    • /
    • v.2 no.1
    • /
    • pp.15-20
    • /
    • 2023
  • The purpose of this study is to analyze the changes and importance of welfare policies in Chungcheong Province using big data analysis technology in the era of the Fourth Industrial Revolution, and to propose stable welfare policies for all generations, including the socially underprivileged. Chungcheong-do policy-related big data is coded in Python, and stable government policies are proposed based on the results of visualization analysis. As a result of the study, the keywords of Chungcheong-do government policy were confirmed in the order of region, society, government and support, education, and women, and welfare policy should be strengthened with a focus on improving local health policy and social welfare. For future research direction, it will be necessary to compare overseas cases and make policy proposals on the stable impact of national welfare policies.

A Study on Intelligent Skin Image Identification From Social media big data

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.191-203
    • /
    • 2022
  • In this paper, we developed a system that intelligently identifies skin image data from big data collected from social media Instagram and extracts standardized skin sample data for skin condition diagnosis and management. The system proposed in this paper consists of big data collection and analysis stage, skin image analysis stage, training data preparation stage, artificial neural network training stage, and skin image identification stage. In the big data collection and analysis stage, big data is collected from Instagram and image information for skin condition diagnosis and management is stored as an analysis result. In the skin image analysis stage, the evaluation and analysis results of the skin image are obtained using a traditional image processing technique. In the training data preparation stage, the training data were prepared by extracting the skin sample data from the skin image analysis result. And in the artificial neural network training stage, an artificial neural network AnnSampleSkin that intelligently predicts the skin image type using this training data was built up, and the model was completed through training. In the skin image identification step, skin samples are extracted from images collected from social media, and the image type prediction results of the trained artificial neural network AnnSampleSkin are integrated to intelligently identify the final skin image type. The skin image identification method proposed in this paper shows explain high skin image identification accuracy of about 92% or more, and can provide standardized skin sample image big data. The extracted skin sample set is expected to be used as standardized skin image data that is very efficient and useful for diagnosing and managing skin conditions.

Webdrama Analysis and Recommendation using Text Mining and Opinion Mining Technique of Social Media (소셜미디어 빅데이터의 텍스트 마이닝과 오피니언 마이닝 기법을 활용한 웹드라마 분석과 제안)

  • Oh, Se-Jong;Kim, Kenneth Chi Ho
    • Cartoon and Animation Studies
    • /
    • s.44
    • /
    • pp.285-306
    • /
    • 2016
  • With the increase use of smartphones, users can consume contents such as webtoon, webnovel and TV drama directly provided by the producers. In this Direct-to-Consumer era, webdrama services from the portal websites are increasing rapidly. Webdramas such as , , and can be analyzed in real time using responses such as unique users, likes, and comments. The analyses used in this research were Social Media Big Data Mining Method and Opinion Mining Method. Specific key words from webdrama can be extracted and viewers positive, neutral or negative emotion can be predicted from the words. The analyses of popular webdramas showed that the established K-Pop Idol member appearance and servicing portal site greatly influence the views, traffics, comments, and likes. Also, 'Mobile TV' proved the effectiveness as another platform other than television. Mobile targeted contents and robust business models still to be developed and identified. Overcoming these few tasks, Korea will be proven to be a webdrama content powerhouse.