• Title/Summary/Keyword: social IoT messages

Search Result 5, Processing Time 0.016 seconds

An IoT Tag and Social Message-based Device Control System (IoT 태그 및 소셜 메시지 기반 사물 제어 시스템)

  • Baek, Seung Min;Jin, Yeon Ju;Ha, Kwon Woo;Han, Sang Wook;Jeong, Jin-Woo
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.9
    • /
    • pp.550-556
    • /
    • 2017
  • Due to the rapid growth and development of Internet of Things (IoT), various devices are now accessible and controllable anytime from anywhere. However, the current IoT system requires a series of complex steps (e.g., launch an application, choose a space and thing, control the thing, etc.) to control the IoT devices; therefore, IoT suffers from a lack of efficient and intuitive methods of interacting with users. To address this problem, we propose a novel IoT control framework based on IoT tags and social messages. The proposed system provides an intuitive and efficient way to control the device based on the device ownership: 1) users can easily control the device by IoT tagging, or 2) users can send an IoT social message to the device owner to request control of the tagged device. Through the development of the prototype system, we show that the proposed system provides an efficient and intuitive way to control devices in the IoT environment.

Improvement of SWoT-Based Real Time Monitoring System (SWoT 기반 실시간 모니터링 시스템 개선)

  • Yu, Myung-han;Kim, Sangkyung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.7
    • /
    • pp.227-234
    • /
    • 2015
  • USN-based real-time monitoring systems, which receive raw data from sensor nodes and store the processed information in traditional servers, recently get to be replaced by IoT(Internet of Things)/WoT(Web of Things)-based ones. Especially, Social Web of Things(SWoT) paradigm can make use of cloud storage over Social Network Service(SNS) and enable the possibility of integrated access, management and sharing. This paper proposes an improved SWoT-based real-time monitoring system which makes up for weak points of existing systems, and implements monitoring service integrating a legacy sensor network and commercial SNS without requiring additional servers. Especially, the proposed system can reduce emergency propagation time by employing PUSH messages.

SWoT Service Discovery for CoAP-Based Sensor Networks (CoAP 기반 센서네트워크를 위한 SWoT 서비스 탐색)

  • Yu, Myung-han;Kim, Sangkyung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.9
    • /
    • pp.331-336
    • /
    • 2015
  • On the IoT-based sensor networks, users or sensor nodes must perform a Service Discovery (SD) procedure before access to the wanted service. Current approach uses a center-concentrated Resource Directory (RD) servers or P2P technique, but these can cause a point-of-failure or flooding of SD messages. In this paper, we proposes an improved SWoT SD approach for CoAP-based sensor networks, which integrates Social Web of Things (SWoT) concept to current CoAP-based SD approach that makes up for weak points of existing systems. This new approach can perform a function like a keyword or location-based search originated from SNS, which can enhances the usability. Finally, we implemented a real system to evaluate.

A Survey of Application Layer Protocols of Internet of Things

  • bibi, Nawab;Iqbal, Faiza;Akhtar, Salwa Muhammad;Anwar, Rabia;bibi, Shamshad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.301-311
    • /
    • 2021
  • The technological advancements of the last two decades directed the era of the Internet of Things (IoT). IoT enables billions of devices to connect through the internet and share their information and resources on a global level. These devices can be anything, from smartphones to embedded sensors. The main purpose of IoT is to make devices capable of achieving the desired goal with minimal to no human intervention. Although it hascome as a social and economic blessing, it still brought forward many security risks. This paper focuses on providing a survey of the most commonly used application layer protocols in the IoT domain, namely, Constrained Application Protocol (CoAP), Message Queuing Telemetry Transport (MQTT), Advanced Message Queuing Protocol (AMQP), and Extensible Messaging and Presence Protocol (XMPP). MQTT, AMQP, and XMPP use TCP for device-to-device communication, while CoAP utilizes UDP to achieve this purpose. MQTT and AMQP are based on a publish/subscribe model, CoAP uses the request/reply model for its structuring. In addition to this, the quality of service provision of MQTT, AMQP, and CoAP is not very high, especially when the deliverance of messages is concerned. The selection of protocols for each application is very a tedious task.This survey discusses the architectures, advantages, disadvantages, and applications of each of these protocols. The main contribution of this work is to describe each of the aforementioned application protocols in detail as well as providing their thorough comparative analysis. This survey will be helpful to the developers in selecting the protocol ideal for their system and/or application.

A Study on the Smart Elderly Support System in response to the New Virus Disease (신종 바이러스에 대응하는 스마트 고령자지원 시스템의 연구)

  • Myeon-Gyun Cho
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.175-185
    • /
    • 2023
  • Recently, novel viral infections such as COVID-19 have spread and pose a serious public health problem. In particular, these diseases have a fatal effect on the elderly, threatening life and causing serious social and economic losses. Accordingly, applications such as telemedicine, healthcare, and disease prevention using the Internet of Things (IoT) and artificial intelligence (AI) have been introduced in many industries to improve disease detection, monitoring, and quarantine performance. However, since existing technologies are not applied quickly and comprehensively to the sudden emergence of infectious diseases, they have not been able to prevent large-scale infection and the nationwide spread of infectious diseases in society. Therefore, in this paper, we try to predict the spread of infection by collecting various infection information with regional limitations through a virus disease information collector and performing AI analysis and severity matching through an AI broker. Finally, through the Korea Centers for Disease Control and Prevention, danger alerts are issued to the elderly, messages are sent to block the spread, and information on evacuation from infected areas is quickly provided. A realistic elderly support system compares the location information of the elderly with the information of the infected area and provides an intuitive danger area (infected area) avoidance function with an augmented reality-based smartphone application. When the elderly visit an infected area is confirmed, quarantine management services are provided automatically. In the future, the proposed system can be used as a method of preventing a crushing accident due to sudden crowd concentration in advance by identifying the location-based user density.