• 제목/요약/키워드: sns

검색결과 2,400건 처리시간 0.03초

대한민국 국민의 세대별 국내여행 방식 및 만족도 영향요인 (A Comparative Study of Domestic Travel Patterns and Determinant Factors Affecting Satisfaction by Generations)

  • 이미숙;박윤주
    • 경영정보학연구
    • /
    • 제22권2호
    • /
    • pp.137-166
    • /
    • 2020
  • 대한민국 국민의 해외여행 비율은 매년 증가 추세인데 반해, 국내여행 비율은 수년간 답보 상태에 있다. 이에, 정부에서는 다양한 국내 관광 활성화 정책을 시행하고 있으나, 이를 통한 국내관광 증진 효과는 제한적이다. 국내관광을 활성화시키기 위해서는, 여행자들별로 선호하는 여행 방식에 차이가 있음을 이해하고, 이에 맞춤화된 여행 서비스를 제공할 필요가 있다. 본 연구는 대한민국 국민들의 세대별 여행 방식의 특징을 분석한 후, 각 세대별로 맞춤화된 여행 서비스를 구성하기 위한 시사점을 도출하였다. '세대'란 같은 시대에 살면서, 비슷한 생애주기에 유사한 내/외부의 경험을 하기 때문에(김기연 등, 2003), 다른 세대와는 구별되는, 그 세대만의 관광 방식이 있을 수 있다. 본 연구는 여행상품 구성의 관점에서 세대 간 차이를 살펴보았다. 즉, 여행 상품 구성 및 마케팅에 필요한 요소인, 여행정보 수집 방식 및 출처, 사전 예약 상품의 종류, 패키지 이용 여부, 여행 시기/기간 및 장소, 여행시 주요활동 그리고, 여행만족도에 영향을 미치는 요인 등에 대한 세대 간 차이를 파악하고 시사점을 도출하였다. 본 연구에는 한국 문화체육관광연구원에서 수집한 2017년 국민 여행 실태조사 데이터 16,713건이 활용되었으며, 데이터는 패널들의 세대에 따라서, 밀레니얼(19세~34세), X세대(35세~54세), 베이비부머(55세~64세), 시니어(65세 이상) 등으로 구분하여 사용하였다. 본 연구결과, 전 세대 모두 자연경관이 수려하고, 문화유산이 풍부하며, 숙박 시설이 쾌적할 때, 여행만족도가 유의미하게 향상되었다. 또한, 전체 패키지보다는 숙박, 차량 대여 등 개별 상품을 쉽게 구매할 수 있도록 하고, 맛집 탐방 상품을 제공하는 것도 유효할 수 있을 것이다. 각 세대별로는, 밀레니얼은 여름철 성수기에 인기 방문지를 중심으로 체험 상품을 구성하는 것이 좋으며, 이들을 위한 관광 안내 시설을 잘 마련할 필요가 있겠다. 또한, 포털사이트와 소셜네트워크 서비스를 통한 마케팅도 밀레니얼 세대에게 효과적일 것으로 보인다. X세대는 자가용으로 여행하기 좋은 지역에, 자녀와 함께 할 수 있는 체험형 여행상품이 유효할 것으로 보인다. 이들에게는 교통만족도가 중요하며, 여름철 성수기에 인기 관광지로 여행을 많이 간다는 특징은 밀레니얼 세대와 유사하다. 베이비부머와 시니어 세대의 경우, 자연 감상 및 휴식, 쇼핑 등을 포함한 여행 상품을 구성하는 것이 좋을 것으로 보이며, 인터넷을 통한 마케팅보다는 구전 효과를 이용하는 것이 유효하겠다. 특히 시니어 세대의 경우, 봄가을을 중심으로, 당일 여행 패키지 상품을 구성하는 것도 효과적일 것으로 보인다. 이러한 세대별 여행 특성을 고려하여 맞춤화된 관광상품을 구성한다면, 궁극적으로 국내관광산업을 활성화에 기여할 수 있을 것으로 기대된다.

텍스트마이닝을 통한 최고경영자 대상 이러닝 콘텐츠 트렌드 분석 (Text Mining-Based Emerging Trend Analysis for e-Learning Contents Targeting for CEO)

  • 김경훈;채명신;이병태
    • 경영정보학연구
    • /
    • 제19권2호
    • /
    • pp.1-19
    • /
    • 2017
  • 본 연구는 텍스트마이닝 기법 중 토픽 분석을 활용하여 관련 업계 국내 1위 S사(社)의 최고경영자 대상 온라인 교육 콘텐츠 강의 중심으로 원문 스크립트를 분석했다. 지난 5년간(2011~2015)년 서비스된 총 4,824개 콘텐츠를 바탕으로 핵심 키워드를 추출한 다음 주제별 22가지 토픽으로 분류한 후 동향 분석을 수행했다. 이를 통해 최근 콘텐츠 비중이 급증하고 있는 토픽 주제를 확인할 수 있었다. 다음으로 토픽 분석을 통해 분류한 토픽 및 카테고리를 바탕으로 회원 평가 요인을 적용해 카테고리 및 각 토픽별 지적 관심도를 체계화 할 수 있었다. 경영·경제 분야에서는 마케팅전략, 인사/조직, 커뮤니케이션 분야 등이 높은 관심도와 만족도를 나타냈다. 인문 분야에서는 철학, 전쟁사, 역사(서양) 라이프스타일에서는 마음건강 분야가 관심도와 만족도 둘 다 높은 것으로 나타났다. 이와 함께 교육용 콘텐츠가 시대 변화에 민감하게 반응할지라도 회원의 관심과 만족도 제고에는 실패할 수 있다는 사실을 확인할 수 있었다. 최근 콘텐츠 비중은 급증했지만 평균 이하의 만족도를 기록한 IT기술 토픽이 대표적 사례라 할 수 있다. 이를 통해 최고경영자 대상 콘텐츠 제작 시 단순히 기술적 측면의 정보전달에서 끝나는 것이 아닌 기술 적용을 통한 가치혁신에 대한 깊이 있는 시사점을 도출하거나 풍부한 영상 자료를 바탕으로 다양한 볼거리를 제공하는 등 양적인 측면과 함께 질적인 측면을 고려해야 한다는 교훈을 얻을 수 있었다. 본 연구는 포털 사이트 혹은 SNS 자료가 아닌 국내 가장 영향력 있는 이러닝 기업 데이터를 토대로 분석을 진행했기에 보다 심도 있고 실용적인 결과를 도출했다. 또한 이러닝 관련 연구 분야에서 지금까지는 드물었지만 기술의 발달로 점점 연구 조사 방법론으로 기대가 높아진 텍스트마이닝 방법에 대하여 그 적용 가능성을 성공적으로 탐색해 보았다. 기존에는 콘텐츠 운영 현황 분석 시 콘텐츠 프로그램명에 입각, 표면적인 방식으로 분류할 수밖에 없는 한계가 존재했다면 텍스트마이닝 방법론을 활용하면 비정형 데이터 콘텐츠 스크립트를 바탕으로 분석하여 내용을 바탕으로 한 보다 심도 있는 콘텐츠 분류 및 주제 분류를 이끌어 낼 수 있다. 이를 바탕으로 연도에 따른 주제별 콘텐츠 서비스 현황을 도식화한다면 현재 부족한 분야와 필요한 분야에 대한 보다 심도 있는 고찰이 가능하다. 본 연구는 다양한 텍스트마이닝 기법 중에서 이러닝의 상황에서 효과적으로 연구하기 위한 새로운 방법론을 제시했으며 향후 최고경영자 교육 관련 분야별 지적 관심도에 대한 분석에 도움이 될 것으로 기대된다.

드러밍 운동이 과체중 여성의 자율신경계에 미치는 영향 (Effects of drumming exercise on the autonomic nervous system in overweight women)

  • 권정인;이재훈;조준용;오유성
    • 한국응용과학기술학회지
    • /
    • 제41권2호
    • /
    • pp.219-232
    • /
    • 2024
  • 이 연구는 성인 여성을 대상으로 체질량지수와 드러밍 운동이 자율신경계에 미치는 영향을 규명하는데 목적이 있다. 30-50대의 성인 여성10명을 체질량지수가 정상인 집단(Low BMI, LBMI <23kg/m2)과 과체중 이상인 집단(High BMI, HBMI>23kg/m2)으로 나누어 드러밍 운동을 실시하였다. 드러밍 운동은 1회 50분, 주 3회, 8주간 실시하였으며, 운동 전후 신체조성과 심박변이도를 측정하였다. 심박변이도는 선형분석인 시간 영역 분석과 주파수 영역 분석을 통해 SDNN(Standard Deviation of NN interval), RMSSD(Root Mean Square of the Successive Differences), HF(High Frequency), LF(Low Frequency), TP(Total Power)를 측정하였다. 비선형분석인 푸앵카레 플롯(Poincaré plot)을 통해 SD1(Standard Deviation of the distance of each point from the y = x axis), SD2(Standard Deviation of each point from the y = x + average R-R interval), SD2/SD1을 측정하였다. 자율신경계 지수로 부교감신경계지수(Parasympathetic Nervous System Index; PNS Index)와 교감신경계지수(Sympathetic Nervous System; SNS Index)를 측정하였다. 연구 결과, 운동 전 심박변이도에서 HBMI 집단과 LBMI 집단 간에는 유의한 차이가 나타나지 않았다. 그러나, 8주간의 드러밍 운동 후에는 HBMI 집단이 LBMI 집단에 비해 체중(p=0.034), 체질량지수(p=0.044), 체지방량(p=0.032), 허리둘레(p=0.013)에서 유의한 상호작용 효과가 나타났다. 심박변이도에서 HBMI 집단은 LBMI 집단에 비해 선형 분석에서 RMSSD(p=0.018)와 TP(p=0.033), 비선형분석에서는 SD1(p=0.018), 자율신경계지수에서는 PNS Index(p=0.040)가 유의하게 증가하였다. RMSSD, SD1 및 PNS Index는 부교감신경계의 활동을 나타내는 지표이다. 결론적으로 8주간의 드러밍 운동이 과체중 이상 여성의 자율신경계 중 부교감신경계의 개선에 긍정적인 효과를 미치는 것으로 확인되었다.

한국관광 실태조사 빅 데이터 분석을 통한 관광산업 활성화 방안 연구 (A Study on the Revitalization of Tourism Industry through Big Data Analysis)

  • 이정미;류미나;임규건
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.149-169
    • /
    • 2018
  • 본 연구에서는 한국문화관광연구원에서 조사된 "2013년~2015년 외래 관광객 실태조사"의 약 36,000개 데이터에 대한 빅 데이터 분석을 통해 관광산업 활성화 방안을 도출해 보고자 한다. 이를 위해서 외래 관광객들의 '전반적 만족도', '재방문 의사', '추천의사' 변수에 가장 많은 영향을 끼치는 요인을 분석하고 해당 요인들의 각각에 대한 영향력에 대해 파악 하였다. 본 연구에서는 SPSS IBM Modeler 16.0의 의사결정나무(C5.0, CART, CHAID, QUEST), 인공신경망, 로지스틱 회귀분석의 데이터마이닝 기법을 이용하여 종속변수에 가장 큰 영향을 미치는 상위 변수 7개씩을 각각 도출하였고, 추가적으로 각 독립변수들의 영향력을 심도 있게 파악하기 위하여 R프로그래밍을 활용하여 SPSS IBM Modeler 16.0을 통해 도출된 각 독립변수들의 영향력을 파악하였다. 데이터 분석 결과 '전반적 만족도'에 가장 영향을 미치는 상위 변수 7개는 관광지매력도, 음식만족도, 숙박만족도, 교통수단만족도, 안내서비스만족도, 방문관광지수, 국가로 나타났으며 가장 큰 영향력을 미친 변수는 음식만족도와 관광지매력도로 분석되었다. '재방문 의사'에 가장 영향을 미치는 상위 변수 7개로는 국가, 여행 동기, 활동, 음식만족도, 제일 좋았던 활동, 관광안내서비스만족도, 관광지매력도로 나타났으며 그중 가장 큰 영향력을 미친 변수는 음식만족도와 여행 동기로 분석되었다. 마지막으로 '추천의사'에 영향을 미치는 상위 변수 7개로는 국가, 관광지매력도, 방문관광지수, 음식만족도, 활동, 관광안내서비스만족도, 비용으로 나타났으며 가장 큰 영향력을 미친 변수는 국가, 관광지매력도, 음식만족도로 분석되었다. 따라서 세 변수에 공통적으로 영향을 끼치는 요인은 음식만족도, 관광지매력도로 분석되었으며 해당 요인들이 공통적으로 한국여행에 대한 전반적 만족도와 재방문 의사, 추천의사에 미치는 영향이 크다는 것을 확인할 수 있었다. 본 연구는 외래 관광객들의 한국관광에 대한 활성화 방안을 "외래 관광객 실태조사" 빅 데이터 분석을 통해 규명함으로써 한국 관광 데이터 분석의 활용과 관광 정책 수립의 기초자료로 활용될 수 있을 것으로 기대되며 향후 기업 및 국가차원에서 한국 관광발전에 기여할 수 있는 활성화 방안을 마련하는 자료로 사용될 수 있을 것으로 기대한다.

사회적 네트워크 구조특성과 제품구전의 확산: 사회문화적 접근 (Structural Properties of Social Network and Diffusion of Product WOM: A Sociocultural Approach)

  • 윤성준;한희은
    • 한국유통학회지:유통연구
    • /
    • 제16권1호
    • /
    • pp.141-177
    • /
    • 2011
  • 기존의 확산관련 연구들은 대부분이 구전 커뮤니케이션의 효용성에 치중하여 개인단위의 변수를 사용하는 경향이 많았다 (Iacobucci 1996; Midgley 외 1992). 반면 구전의 선행 변수로써 네트워크의 구조적 특성을 소비자의 집단문화적 성향에 기초하여 조사한 연구는 찾아보기 어렵다. 본 연구는 이같은 연구배경 하에서 네트워크의 구조적 특성과 소비자의 구전간의 관계를 연관시켜 비교문화적으로 접근하려고 하였다. 본 연구에서 추구하는 주요 목적은 한국과 중국 소비자를 대상으로 사회적 네트워크 형태에 따른 구전효과를 규명하려는 것이며, 네트워크와 구전 효과와의 관계에 영향을 미치는 조절변수로써 문화적 가치관의 역할을 검증하려고 하였다. 구체적인 연구목적은 다음과 같다. 첫째, 사회적 네트워크 관련 이론들을 바탕으로 한국과 중국 소비자들을 대상으로 네트워크의 구조적 특성들 (예: 유대강도, 중심성, 범위)이 구전의 효과 (구전 의향 및 구전 정보의 질)에 어떠한 영향을 미치는지를 규명한다. 둘째, 사회적 네트워크 특성이 구전효과에 미치는 영향에 있어서 문화적 가치 (불확실성 회피 성향, 개인주의성향)가 조절 역할을 하는지를 규명한다. 셋째, 사회적 네트워크 특성과 구전효과의 선행변수로써 소비자 개인의 혁신 성향의 역할을 규명한다. 분석 결과, 한국과 중국 소비자들은 공통적으로 네트워크 유대강도와 중심성은 구전의향에 유의한 영향을 보였으나 네트워크 범위는 두집단 모두 유의하게 나타나지 않았다. 반면, 한, 중 소비자 공통적으로 불확실성회피 성향은 네트워크범위와 상호작용을 함으로써 구전의향에 조절역할을 하는 것으로 나타났다. 마지막으로 소비자의 혁신성향은 한중 두 소비자 집단에서 공통적으로 네트워크 특성 (중심성)과 구전효과(구전정보의 질) 에 유의하게 긍정적 영향을 미치는 것으로 나타났다. 한중 양국의 네트워크 특성을 비교한 결과 한국이 중국보다 유대강도, 중심성, 범위에서 모두 유의하게 더 높은 점수를 보였으며, 불확실성회피 성향 또한 한국 소비자가 중국보다 유의하게 높은 것으로 나타났다.

  • PDF

CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석 (Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.141-154
    • /
    • 2019
  • 인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.

주제 균형 지능형 텍스트 요약 기법 (Subject-Balanced Intelligent Text Summarization Scheme)

  • 윤여일;고은정;김남규
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.141-166
    • /
    • 2019
  • 최근 다양한 매체를 통해 생성되는 방대한 양의 텍스트 데이터를 효율적으로 관리 및 활용하기 위한 방안으로써 문서 요약에 대한 연구가 활발히 진행되고 있다. 특히 최근에는 기계 학습 및 인공 지능을 활용하여 객관적이고 효율적으로 요약문을 도출하기 위한 다양한 자동 요약 기법이(Automatic Summarization) 고안되고 있다. 하지만 현재까지 제안된 대부분의 텍스트 자동 요약 기법들은 원문에서 나타난 내용의 분포에 따라 요약문의 내용이 구성되는 방식을 따르며, 이와 같은 방식은 비중이 낮은 주제(Subject), 즉 원문 내에서 언급 빈도가 낮은 주제에 대한 내용이 요약문에 포함되기 어렵다는 한계를 갖고 있다. 본 논문에서는 이러한 한계를 극복하기 위해 저빈도 주제의 누락을 최소화하는 문서 자동 요약 기법을 제안한다. 구체적으로 본 연구에서는 (i) 원문에 포함된 다양한 주제를 식별하고 주제별 대표 용어를 선정한 뒤 워드 임베딩을 통해 주제별 용어 사전을 생성하고, (ii) 원문의 각 문장이 다양한 주제에 대응되는 정도를 파악하고, (iii) 문장을 주제별로 분할한 후 각 주제에 해당하는 문장들의 유사도를 계산한 뒤, (iv) 요약문 내 내용의 중복을 최소화하면서도 원문의 다양한 내용을 최대한 포함할 수 있는 자동적인 문서 요약 기법을 제시한다. 제안 방법론의 평가를 위해 TripAdvisor의 리뷰 50,000건으로부터 용어 사전을 구축하고, 리뷰 23,087건에 대한 요약 실험을 수행한 뒤 기존의 단순 빈도 기반의 요약문과 주제별 분포의 비교를 진행하였다. 실험 결과 제안 방법론에 따른 문서 자동 요약을 통해 원문 내각 주제의 균형을 유지하는 요약문을 도출할 수 있음을 확인하였다.

인공지능 기술에 관한 가트너 하이프사이클의 네트워크 집단구조 특성 및 확산패턴에 관한 연구 (Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis)

  • 신선아;강주영
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.107-129
    • /
    • 2022
  • 기술경쟁이 심화되고 있는 오늘날 신기술에 대한 선도적 위치의 선점이 중요하다. 선도적 위치의 선점과 적정시점에 기술 획득·관리를 위해 이해관계자들은 지속적으로 기술에 대한 탐색활동을 수행한다. 이를 위한 참고 자료로서 가트너 하이프 사이클(Gartner Hype Cycle)은 중요한 의미가 있다. 하이프 사이클은 기술수명주기(S-curve)와 하이프 수준(Hype Level)을 결합하여 새로운 기술에 대한 대중의 기대감을 시간의 흐름에 따라 나타낸 그래프이다. 새로운 기술에 대한 기대는 기술사업화뿐만 아니라 연구개발 투자의 정당성, 투자유치를 위한 기회의 발판이 된다는 점에서 연구개발 담당자 및 기술투자자의 관심이 높다. 그러나 산업계의 높은 관심에 비해 실증분석을 시도한 선행연구는 다양하지 못하다. 선행문헌 분석결과 데이터 종류(뉴스, 논문, 주가지수, 검색 트래픽 등)나 분석방법은 한정적이었다. 이에 본 연구에서는 확산의 주요한 채널이 되어가고 있는 소셜네트워크서비스의 데이터를 활용하여 'Gartner Hype Cycle for Artificial Intelligence, 2021'의 단계별 기술들에 대한 집단구조(커뮤니티)의 특성과 커뮤니티 간 정보 확산패턴을 분석하고자 한다. 이를 위해 컴포넌트 응집규모(Component Cohesion Size)를 통해 각 단계별 구조적 특성과 연결중심화(Degree Centralization)와 밀도(Density)를 통해 확산의 방식을 확인하였다. 연구결과 기술을 수용하는 단계별 집단들의 커뮤니케이션 활동이 시간이 지날 수록 분절이 커지며 밀도 역시 감소함을 확인하였다. 또한 새로운 기술에 대한 관심을 촉발하는 혁신태동기 집단의 경우 정보확산을 촉발하는 외향연결(Out-degree) 중심화 지수가 높았으며, 이후의 단계는 정보를 수용하는 내향연결(In-degree) 중심화 지수가 높은 것으로 나타났다. 해당 연구를 통해 하이프 사이클에 관한 이론적 기초를 제공할 것이다. 또한 인공지능기술에 대한 기술관심집단들의 기대감을 반영한 정보확산의 특성과 패턴을 소셜데이터를 통해 분석함으로써 기업의 기술투자 의사결정에 새로운 시각을 제공할 것이다.

영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법 (Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation)

  • 유띳로따낙;누르지드;하인애;조근식
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.57-77
    • /
    • 2013
  • 소셜 미디어는 모바일 어플리케이션과 웹에서 가장 많이 사용되는 미디어 중 하나이다. Nielsen사의 보고서에 따르면 소셜 네트워크 서비스와 블로그가 온라인 사용자의 주 활동 공간으로 사용되고 있으며, 미국인 중에서 온라인 활동이 왕성한 5명의 사용자중 4명은 매일 소셜 네트워크 서비스와 블로그를 방문하고 온라인 활동 시간의 23%를 소비한다고 집계하고 있다. 미국의 인터넷 사용자들은 야후, 구글, AOL 미디어 네트워크, 트위터, 링크드인 등과 같은 소셜 네트워크 서비스중 페이스북에서 가장 많은 시간을 소비한다. 최근에는 대부분의 회사들이 자신의 특정 상품에 대하여 "페이스북 페이지(Facebook Page)"를 생성하고 상품에 대한 프로모션을 진행한다. 페이스북에서 제공되는 "좋아요" 옵션은 페이스북 페이지를 통해 자신이 관심을 가지는 상품(아이템)을 표시하고 그 상품을 지지할 수 있도록 한다. 많은 영화를 제작하는 영화 제작사들도 페이스북 페이지와 "좋아요" 옵션을 이용하여 영화 프로모션과 마케팅에 이용한다. 일반적으로 다수의 스트리밍 서비스 제공업들도 영화와 TV 프로그램을 즐기며 볼 수 있는 서비스를 사용자들에게 제공한다. 이 서비스는 일반 컴퓨터와 TV 등의 단말기에서인터넷을 통해 영화와 TV 프로그램을 즉각적으로 제공할 수 있다. 스트리밍 서비스의 선두 주자인 넷플릭스는 미국, 라틴 아메리카, 영국 그리고 북유럽 국가 등에 3천만 명 이상의 스트리밍 사용자가 가입되어 있다. 또한 넥플릭스는 다양한 장르로 구성된 수백만 개의 영화와 TV 프로그램을 보유하고 있다. 하지만 수많은 콘텐츠로 인해 사용자들은 자신이 선호하는 장르에 관련된 영화와 TV 프로그램을 찾기 위해 많은 시간을 소비해야 된다. 많은 연구자들이 이러한 사용자의 불편함을 줄이기 위해 아이템에 대한 사용자가 보지 않은 아이템에 대한 선호도를 예측하고 높은 예측값을 갖는 아이템을 사용자에게 제공하기 위한 추천 시스템을 적용하였다. 협업적 여과 방법은 추천 시스템을 구축하기 위해 가장 많이 사용되는 방법이다. 협업적 여과 시스템은 사용자들이 평가한 아이템을 기반으로 각 사용자 간의 유사도를 측정하고 목적 사용자와 유사한 성향을 가진 사용자 그룹을 결정한다. 군집된 그룹은 이웃 사용자 집단으로 불리며 이를 이용하여 특정 아이템에 대한 선호도를 예측하고, 예측 값이 높은 아이템을 목적 사용자에게 추천해 준다. 협업적 여과 방법이 적용되는 분야는 서적, 음악, 영화, 뉴스 및 비디오 등 다양하지만 논문에서는 영화에 초점을 맞춘다. 이 협업적 여과 방법이 추천 시스템 내에서 유용하게 활용되고 있지만 아직 "희박성 문제"와 "콜드 스타트 문제" 등 해결해야 할 과제가 남아있다. 희박성 문제는 아이템의 수가 증가할수록 아이템에 대한 사용자의 로그 밀도가 감소하는 것이다. 즉, 전체 아이템 수에 비해 사용자가 아이템에 대해 평가한 정보가 충분하지 않기 때문에 사용자의 성향을 파악하기 어렵고, 이로 인해 사용자가 아직 평가하지 않은 아이템에 대해서 선호도를 추측하기 어려운 것을 말한다. 이 희박성 문제가 포함된 경우 적합한 이웃 사용자 집단을 형성하는데 어려움을 겪게 되고 사용자들에게 제공되는 아이템 추천의 질이 떨어지게 된다. 콜드 스타트 문제는 시스템 내에 새로 들어온 사용자 또는 아이템으로 지금까지 한 번도 평가를 하지 않은 경우에 발생한다. 즉, 사용자가 평가한 아이템에 대한 정보가 전혀 포함되어 있지 않거나 매우 적기 때문에 이러한 경우 또한 적합한 이웃 사용자 집단을 형성하는데 어려움을 겪게 되고 사용자가 평가하지 않은 아이템에 대한 선호도 예측의 정확성이 감소되게 된다. 본 논문에서는 영화 추천 시스템에서 발생될 수 있는 초기 사용자 문제를 해결하기 위하여 사용자가 평가한 영화와 소셜 네트워크 서비스로부터 추출된 사용자 선호 장르를 활용하여 사용자 군집을 형성하고 이를 활용하는 방법을 제안한다. 소셜 네트워크 서비스로부터 사용자가 선호하는 영화 장르를 추출하기 위해 페이스북 페이지의 '좋아요' 옵션을 이용하며, 이 '좋아요' 정보를 분석하여 사용자의 영화 장르 관심사를 추출한다. 페이스북의 영화 페이지는 각 영화를 위한 페이스북 페이지로 구성되고 있으며, 사용자는 자신의 선호도에 따라서 "좋아요" 옵션을 선택할 수 있다. 사용자의 페이스북 정보는 페이스북 그래프 API를 활용하여 추출되고 이로부터 사용자 선호 영화를 알 수 있게 된다. 시스템에서 활용되는 영화 정보는 인터넷 영화 데이터베이스인 IMDb로부터 획득한다. IMDb는 수많은 영화와 TV 프로그램을 보유하고 있으며, 각 영화에 관련된 배우 정보, 장르 및 부가 정보들을 포함한다. 논문에서는 사용자가 "좋아요" 표시를 한 영화 페이지를 이용하여 IMDb로부터 영화 장르 정보를 가져온다. 그리고 추출된 영화 장르 선호도와 본 시스템에서 제안하는 영화 평가 항목을 이용하여 유사한 이웃 사용자 집단을 구성한 후, 사용자가 평가하지 않은 아이템에 대한 선호도를 예측하고, 높은 예측 값을 갖는 아이템을 사용자에게 추천한다. 본 논문에서 제안한 사용자의 선호 장르 기반의 사용자 군집 기법을 이용한 시스템을 평가하기 위해서 IMDb 데이터 집합을 이용하여 사용자 영화 평가 시스템을 구축하였고 참가자들의 영화 평가 정보를 획득하였다. 페이스북 영화 페이지 정보는 참가자들의 페이스북 계정과 페이스북 그래프 API를 통해 획득하였다. 사용자 영화 평가 시스템을 통해 획득된 사용자 데이터를 제안하는 방법에 적용하였고 추천 성능, 품질 및 초기 사용자 문제를 벤치마크 알고리즘과 비교하여 평가하였다. 실험 평가의 결과 제안하는 방법을 적용한 추천 시스템을 통해 추천의 품질을 10% 향상시킬 수 있었고, 초기 사용자 문제에 대해서 15% 완화시킬 수 있음을 볼 수 있었다.

소비자의 부정적 브랜드 루머의 수용과 확산 (Consumer's Negative Brand Rumor Acceptance and Rumor Diffusion)

  • 이원준;이한석
    • Asia Marketing Journal
    • /
    • 제14권2호
    • /
    • pp.65-96
    • /
    • 2012
  • 루머는 신뢰할 만한 타당한 근거나 이유가 없음에도 불구하고 광범위하게 이야기되는 일상적인 대화나 의견으로서 오랜기간 소비자 개개인의 사적 영역의 문제였다. 그러나 대중의 사랑과 주목을 받는 기업이나 브랜드는 선천적으로 소비자의 관심으로부터 멀어질 수 없으며, 항상 루머의 주요한 소재가 되어 왔다. 그 결과 현대의 소비자 커뮤니케이션 환경에서 루머는 기업 경영활동에 중요한 위기 요인이 되고 있다. 기업과 브랜드들이 당면하는 소비자 루머들은 크게 기업과 관련된 음모성 루머와 상품과 직접적 관련이 있는 오염성 루머로 나누어지며 국내외에서 많은 위기 사례들이 발견되고 있다. 심지어 P&G, SK, 현대, 삼성처럼 잘 정비된 홍보 조직을 갖춘 굴지의 대기업들조차 이런 루머로부터 자유롭지 못하며, 기존의 대응방식 역시 적절하지 못했던 것이 사실이다. 부정적 루머가 주목받아야 하는 이유는 해당 기업의 매출 및 점유율 하락은 물론 주식 가격에도 부정적인 영향을 미치며 오랜기간 구축해온 소비자와의 관계마저 황폐화시킬 가능성이 있기 때문이다. 최근 인터넷, 소셜 네트워크 서비스의 확산과 더불어 브랜드와 관련된 루머의 중요성은 더욱 증대하고 있으나 루머 연구는 지금까지 기업이나 마케팅 연구자의 정당한 주목을 받지 못하였다. 이에 본 연구는 루머의 다각적인 측면을 고려하는 상황주의자적 연구 패러다임을 기반으로 지각된 유용성, 원천 신뢰성, 메시지 신뢰성, 걱정, 생동감과 같은 루머와 관련된 속성들이 루머 수용강도와 루머 구전의도에 미치는 영향을 분석하였다. 이를 위하여 가상 브랜드와 루머가 제시되었으며, 실증조사를 통한 데이터 수집과 분석이 이루어졌다. 연구 결과에 따르면 원천 신뢰성, 메시지 신뢰성, 걱정, 생동감 같은 루머 특성 변수들은 루머 수용 강도에 유의한 영향을 미치고, 루머 수용강도는 루머 구전의도에 유의한 영향을 미치는 것으로 나타났다. 반면에 지각된 중요성은 루머 수용강도에 유의한 영향을 미치지 못하며, 상품 관여도의 조절효과 역시 유의하지 않은 것으로 나타났다. 본 연구는 주요한 실무적, 학문적 시사점을 제공하고 있다. 첫째, 루머를 자연발생적인 사회 현상이 아니라 소비자의 주요 활동의 일부이며, 마케터의 관심과 대응 커뮤니케이션 전략이 필요한 브랜드 관련 현상임을 주장하였다. 둘째, 브랜드 루머의 심리적, 사회적인 다차원적 구성 요인과 확산되는 경로를 제시함으로서 루머에 대한 능동적인 관리 가능성을 제시하였다. 셋째, 온라인상의 루머 활동이 기업 성과에 미치는 영향을 제시함으로서 기업들의 적극적인 온라인 커뮤니케이션 활동과 평판 관리의 필요성을 주장하였다. 넷째, 소비자의 걱정과 같은 부정적 정서가 루머의 온상이 되고 있음을 규명함으로서 소비자의 의혹을 불식시키기 위하여 정확하고 진실된 정보를 제공해야 함을 주장하였다. 다섯째, 루머의 유용성이 확산에 미치는 영향 가설이 기각되었으며, 상품 관여도의 조절 효과 역시 기각되었다. 이는 루머를 접하는 소비자의 입장에서 볼 때, 루머 자체가 무의미하더라도 단순한 재미나 호기심만으로도 얼마든지 확산될 가능성을 암시하고 있다. 일부 기업들은 사실이 아니라는 이유만으로 루머를 무시하거나 간과하는 경우들이 있으나, 기업의 예상과 다르게 루머가 얼마든지 확산될 수 있는 가능성을 보여주며, 기업의 보다 세심한 대응 전략의 필요성을 요구하고 있다.

  • PDF