• Title/Summary/Keyword: snowmelt

Search Result 57, Processing Time 0.028 seconds

A study on the future snowmelt simulation using GIS - Soyanggang-dam and Chungju-dam Watersheds - (GIS 기반의 미래융설모의 연구 - 소양강댐, 충주댐 유역 -)

  • Shin, Hyung-Jin;Kang, Su-Man;Kwon, Hyung-Joong;Kim, Seong-Joon
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.225-229
    • /
    • 2005
  • The objective of this study is to evaluate snowmelt impact on watershed hydrology using climate change scenarios on Soyanggang-dam and Chungju-dam watershed. SLURP model was used for analyzing hydrological changes based on climate changes. The results (in years 2050 and 2100) of climate changes scenarios was CCCma CGCM2 of SRES suggested by IPCC and the snow cover map and snow depth was derived from NOAA/AVHRR images. The model was calibrated and verified for dam inflow data from 1998 to 2001.

  • PDF

Energy and Mass Balance of Snowpack - Rapid snowmelt during Fohn events in the Takada plain -

  • ;Shinichi Takami
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.88-94
    • /
    • 1990
  • Several models physically based to predict the evolution of the snowpack have been proposed. Validity of these models for hourly estimation is, however, questionable, since they have been tested only on a daily basis. A computational model to predict the amount of snowpack on an hourly basis in terms of snowload from a set of meterological measurements was developed and investigated the rapid snowmelt conditions during Fohn events in the Takada plain.

  • PDF

Extraction of Snow Cover Area and Depth Using MODIS Image for 5 River Basins South Korea (MODIS 위성영상을 이용한 국내 5대강 유역 적설분포 및 적설심 추출)

  • Hong, U-Yong;Sin, Hyeong-Jin;Kim, Seong-Jun
    • KCID journal
    • /
    • v.14 no.2
    • /
    • pp.225-235
    • /
    • 2007
  • The shape of streamflow hydrograph during the early period of spring is very much controlled by the area and depth of snow cover especially in mountainous area. When we simulate the streamfolw of a watershed snowmelt, we need some information for snow cover extent and depth distribution as parameters and input data in the hydrological models. The purpose of this study is to suggest an extraction method of snow cover area and snow depth distribution using Terra MODIS image. Snow cover extent for South Korea was extracted for the period of December 2000 and April 2006. For the snow cover area, the snow depth was interpolated using the snow depth data from 69 meteorological observation stations. With these data, it is necessary to run a hydrological model considering the snow-related data and compare the simulated streamflow with the observed data and check the applicability for the snowmelt simulation.

  • PDF

Extraction of Snow Cover Area and Depth Using NOAA/AVHRR Images (NOAA/AVHRR 영상을 이용한 적설분포 및 적설심 추출)

  • Kang, Su-Man;Kwon, Hyung-Joong;Kim, Seong-Joon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.254-259
    • /
    • 2005
  • The shape of a streamflow hydrograph is very much controlled by the area and depth of snow cover in mountain area. The purpose of this study is to suggest extraction methods for snow cover area and depth using NOAA/AVHRR images in Soyanggang watershed. Snow cover area maps ware derived form channel 1, 3, 4 images of NOAA/AVHRR based on threshold value. In order to extract snow cover depth, snow cover area maps were overlaid daily snow depth data form 7 meteorological observation stations. Snow cover area and depth was mapped for period of Dec. 2002 and Mar. 2003. For evaluating snowmelt changes, depletion curve was created using daily snow cover area in the same period. It is necessary to compare these results with observed data and check the applicability of the suggested method in snowmelt simulation.

  • PDF

Snowmelt Effect in Hancheon watershed, Jeju Island (제주 한천유역에 대한 시공간적인 융설 영향 평가)

  • Lee, Jeong Eun;Kim, Nam Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.468-468
    • /
    • 2015
  • 일반적으로 겨울철 강수는 기온에 따라 강우와 강설로 분류된다. 특히 기온이 임계온도보다 낮을 경우, 강수는 강설의 형태로 지표면에 도달하여 적설되어진다. 겨울철 산간에 적설된 눈은 봄철이 되어 기온이 상승함에 따라 융설(snowmelt)이 발생하여 유역의 유출에 기여한다. 이러한 융설은 기온이 영하로 내려가는 11-4월에 해당하는 갈수기에 유출량 등의 수문성분에 영향을 미치고 있다. 특히 제주유역의 경우, 고도에 따른 강수량, 기온의 차이가 매우 크므로 강설, 융설 현상의 시공간적인 발생에 대한 연구가 더욱 요구된다. 따라서, 본 연구에서는 제주유역의 강설, 융설 발생의 시공간적인 평가를 위해서 융설모의가 가능한 SWAT-K를 한천유역에 적용하여, 그 결과를 분석하였다. 융설모의 이론을 검토하고, 실제 대상유역에 융설을 고려하기 위한 매개변수를 설정하고, 월별, 소유역별로 강설, 융설 발생현황을 평가하였다.

  • PDF

The Correlation between Groundwater Level and the Moving Average of Precipitation considering Snowmelt Effect and Critical Infiltration in Han River Watershed (융설효과와 한계침투량을 고려한 한강유역의 지하수위와 강우이동평균간의 상관관계)

  • Yang, Jeong-Seok;Kim, Nam-Ki
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.313-321
    • /
    • 2009
  • The relationship between precipitation and groundwater level and the correlation between the moving average of precipitation and goundwater level were analyzed for the Han river watershed in Korean peninsular. Fourteen regions in the watershed were selected and there were somewhat different patterns of seasonal fluctuation of groundwater level data. The groundwater level data tends to decrease in dry spell and increase in wet spell however the range between maximum and minimum values is quite different for each gauging point. We could have stronger correlation between groundwater level for fractured rock aquifer and the moving average of precipitation than the groundwater level for alluvial aquifer. The critical infiltration, which is the maximum daily infiltration averaged throughout watershed, value is turned out to have the range of 10 to 90 mm. We could have stronger correlation when we consider critical infiltration and modify the original precipitation data than we use original precipitation data. We also could have higher correlation coefficient when we consider snowmelt effect for the watershed that has considerable snow event.

Study of Snow Depletion Characteristics at Two Mountainous Watersheds Using NOAA AVHRR Time Series Data

  • Shin, Hyungjin;Park, Minji;Chae, Hyosok;Kim, Saetbyul;Kim, Seongjoon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.315-324
    • /
    • 2013
  • Spatial information of snow cover and depth distribution is a key component for snowmelt runoff modeling. Wide snow cover areas can be extracted from NOAA AVHRR or Terra MODIS satellite images. In this study eight sets of annual snow cover data (1997-2006) in two mountainous watersheds (A: Chungju-Dam and B: Soyanggang-Dam) were extracted using NOAA AVHRR images. The distribution of snow depth within the Snow Cover Area (SCA) was generated using snowfall data from ground meteorological observation stations. Snow depletion characteristics for the two watersheds were analyzed snow distribution time series data. The decreased pattern of SCA can be expressed as a logarithmic function; the determination coefficients were 0.62 and 0.68 for the A and B watersheds, respectively. The SCA decreased over 70% within 10 days from the time of maximum SCA.

Digital simulation model for soil erosion and Sediment Yield from Small Agricultural Watersheds(I) (농업 소류역으로부터의 토양침식 및 유사량 시산을 위한 전산모의 모델 (I))

  • 권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.108-114
    • /
    • 1980
  • A deterministic conceptual erosion model which simulates detachment, entrainment, transport and deposition of eroded soil particles by rainfall impact and flowing water is presented. Both upland and channel phases of sediment yield are incorporated into the erosion model. The algorithms for the soil erosion and sedimentation processes including land and crop management effects are taken from the literature and then solved using a digital computer. The erosion model is used in conjunction with the modified Kentucky Watershed Model which simulates the hydrologic characteristics from watershed data. The two models are linked together by using the appropriate computer code. Calibrations for both the watershed and erosion model parameters are made by comparing the simulated results with actual field measurements in the Four Mile Creek watershed near Traer, Iowa using 1976 and 1977 water year data. Two water years, 1970 and 1978 are used as test years for model verification. There is good agreement between the mean daily simulated and recorded streamflow and between the simulated and recorded suspended sediment load except few partial differences. The following conclusions were drawn from the results after testing the watershed and erosion model. 1. The watershed and erosion model is a deterministic lumped parameter model, and is capable of simulating the daily mean streamflow and suspended sediment load within a 20 percent error, when the correct watershed and erosion parameters are supplied. 2. It is found that soil erosion is sensitive to errors in simulation of occurrence and intensity of precipitation and of overland flow. Therefore, representative precipitation data and a watershed model which provides an accurate simulation of soil moisture and resulting overland flow are essential for the accurate simulation of soil erosion and subsequent sediment transport prediction. 3. Erroneous prediction of snowmelt in terms of time and magnitute in conjunction with The frozen ground could be the reason for the poor simulation of streamflow as well as sediment yield in the snowmelt period. More elaborate and accurate snowmelt submodels will greatly improve accuracy. 4. Poor simulation results can be attributed to deficiencies in erosion model and to errors in the observed data such as the recorded daily streamflow and the sediment concentration. 5. Crop management and tillage operations are two major factors that have a great effect on soil erosion simulation. The erosion model attempts to evaluate the impact of crop management and tillage effects on sediment production. These effects on sediment yield appear to be somewhat equivalent to the effect of overland flow. 6. Application and testing of the watershed and erosion model on watersheds in a variety of regions with different soils and meteorological characteristics may be recommended to verify its general applicability and to detact the deficiencies of the model. Futhermore, by further modification and expansion with additional data, the watershed and erosion model developed through this study can be used as a planning tool for watershed management and for solving agricultural non-point pollution problems.

  • PDF

Influences of Fractionation of Stable Isotopic Composition of Rain and Snowmelt on Isotopic Hydrograph Separation (강우와 융설의 안정동위원소 변동에 의한 동위원소 수문분리법의 계통오차계산)

  • Lee, Jeonghoon;Koh, Dong-Chan;Choo, Mi Kyung
    • Journal of the Korean earth science society
    • /
    • v.35 no.2
    • /
    • pp.97-103
    • /
    • 2014
  • An isotopic hydrograph separation technique has been able to determine the contribution of new water (event water such as rain or snowmelt) and old water (pre-event water like groundwater) to a stream hydrograph for last several decades using stable water isotopes. It is based on the assumption that the isotopic compositions of both new water and old water at a given instant in time are known and the stream water is a mixture of the two waters. In this study, we show that there is a systematic error (standard error in the new water fraction) in the isotopic hydrograph separation if the average isotopic compositions of new water were used ignoring the temporal variations of those of new water. The standard error in the new water fraction is caused by: (1) the isotopic difference between the average value and temporal variations of new water; (2) the new water fraction as runoff contributing to the stream during rainfall or spring melt; and (3) the isotopic differences between new and old water (inversely). The standard error is large, in particular, when new water dominates the stream flow, such as runoff during intense rainfall and in areas of low infiltration during spring melt. To reduce the error in the isotopic hydrograph separation, incorporation of fractionation in the isotopic composition of new water observed at a point should be considered with simultaneous sampling of new water, old water and stream water.