• Title/Summary/Keyword: snow depth

Search Result 139, Processing Time 0.028 seconds

Extraction of Snow Cover Area and Depth Using MODIS Image for 5 River Basins South Korea (MODIS 위성영상을 이용한 국내 5대강 유역 적설분포 및 적설심 추출)

  • Hong, U-Yong;Sin, Hyeong-Jin;Kim, Seong-Jun
    • KCID journal
    • /
    • v.14 no.2
    • /
    • pp.225-235
    • /
    • 2007
  • The shape of streamflow hydrograph during the early period of spring is very much controlled by the area and depth of snow cover especially in mountainous area. When we simulate the streamfolw of a watershed snowmelt, we need some information for snow cover extent and depth distribution as parameters and input data in the hydrological models. The purpose of this study is to suggest an extraction method of snow cover area and snow depth distribution using Terra MODIS image. Snow cover extent for South Korea was extracted for the period of December 2000 and April 2006. For the snow cover area, the snow depth was interpolated using the snow depth data from 69 meteorological observation stations. With these data, it is necessary to run a hydrological model considering the snow-related data and compare the simulated streamflow with the observed data and check the applicability for the snowmelt simulation.

  • PDF

Impact of Snow Depth Initialization on Seasonal Prediction of Surface Air Temperature over East Asia for Winter Season (겨울철 동아시아 지역 기온의 계절 예측에 눈깊이 초기화가 미치는 영향)

  • Woo, Sung-Ho;Jeong, Jee-Hoon;Kim, Baek-Min;Kim, Seong-Joong
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.117-128
    • /
    • 2012
  • Does snow depth initialization have a quantitative impact on sub-seasonal to seasonal prediction skill? To answer this question, a snow depth initialization technique for seasonal forecast system has been implemented and the impact of the initialization on the seasonal forecast of surface air temperature during the wintertime is examined. Since the snow depth observation can not be directly used in the model simulation due to the large systematic bias and much smaller model variability, an anomaly rescaling method to the snow depth initialization is applied. Snow depth in the model is initialized by adding a rescaled snow depth observation anomaly to the model snow depth climatology. A suite of seasonal forecast is performed for each year in recent 12 years (1999-2010) with and without the snow depth initialization to evaluate the performance of the developed technique. The results show that the seasonal forecast of surface air temperature over East Asian region sensitively depends on the initial snow depth anomaly over the region. However, the sensitivity shows large differences for different timing of the initialization and forecast lead time. Especially, the snow depth anomaly initialized in the late winter (Mar. 1) is the most effective in modulating the surface air temperature anomaly after one month. The real predictability gained by the snow depth initialization is also examined from the comparison with observation. The gain of the real predictability is generally small except for the forecasting experiment in the early winter (Nov. 1), which shows some skillful forecasts. Implications of these results and future directions for further development are discussed.

Analysis of Weather Data for Design of Biological Production Facility (생물생산시설 설계용 기상자료 분석)

  • Lee, Suk-Gun;Lee, Jong-Won;Lee, Hyun-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.156-163
    • /
    • 2005
  • This study was attempted to provide some fundamental data for safety structrural design of biological production facility. Wind load and snow load, acting on agricultural structures is working more sensitive than any other load. Therefore, wind speed and snow depth according to return periods for design load estimation were calculated by frequency analysis using the weather data(maximum instantaneous wind speed, maximum wind speed, maximum depth of snow cover and fall) of 68 regions in Korea. Equations for estimating maximum instantaneous wind speed with maximum wind speed were developed for all, inland and seaside regions. The results were about the same as the current eqution in general. Design wind speed and snow depth according to return periods were calculated and Local design wind load and snow load depending on return periods were presented together with iso-wind speed and iso-snow depth maps. The calculated design snow depth by maximum depth of snow cover were higher than design snow depth by maximum depth of snow fall. Considering wind speed and snow depth, protected cultivation is very difficult in Ullungdo, Gangwon seaside and contiguity inland regions, and strong structural design is needed in the west-south seaside against wind speed, and structure design of biological production facility in these regions need special consideration.

  • PDF

Extraction of Snow Cover Area and Depth Using NOAA/AVHRR Images (NOAA/AVHRR 영상을 이용한 적설분포 및 적설심 추출)

  • Kang, Su-Man;Kwon, Hyung-Joong;Kim, Seong-Joon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.254-259
    • /
    • 2005
  • The shape of a streamflow hydrograph is very much controlled by the area and depth of snow cover in mountain area. The purpose of this study is to suggest extraction methods for snow cover area and depth using NOAA/AVHRR images in Soyanggang watershed. Snow cover area maps ware derived form channel 1, 3, 4 images of NOAA/AVHRR based on threshold value. In order to extract snow cover depth, snow cover area maps were overlaid daily snow depth data form 7 meteorological observation stations. Snow cover area and depth was mapped for period of Dec. 2002 and Mar. 2003. For evaluating snowmelt changes, depletion curve was created using daily snow cover area in the same period. It is necessary to compare these results with observed data and check the applicability of the suggested method in snowmelt simulation.

  • PDF

Field measurement study on snow accumulation process around a cube during snowdrift

  • Wenyong Ma;Sai Li;Xuanyi Zhou;Yuanchun Sun;Zihan Cui;Ziqi Tang
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.25-38
    • /
    • 2023
  • Due to the complexity and difficulty in meeting the multiphase flow complexity, similarity, and multiscale characteristics, the mechanism of snow drift is so complicated that the snow deposition prediction is still inaccurate and needs to be far improved. Meanwhile, the validation of prediction methods is also limited due to a lack of field-measured data about snow deposition. To this end, a field measurement activity about snow deposition around a cube with time was carried out, and the snow accumulation process was measured under blowing snow conditions in northwest China. The maximum snow depth, snow profile, and variation in snow depth around the cube were discussed and analyzed. The measured results indicated three stages of snow accumulation around the cube. First, snow is deposited in windward, lateral and leeward regions, and then the snow depth in windward and lateral regions increases. Secondly, when the snow in the windward region reaches its maximum, the downwash flow erodes the snow against the front wall. Meanwhile, snow range and depth in lateral regions have a significant increase. Thirdly, a narrow road in the leeward region is formed with the increase in snow range and depth, which results in higher wind speed and reforming snow deposition there. The field measurement study in this paper not only furthers understanding of the snow accumulation process instead of final deposition under complex conditions but also provides an important benchmark for validating prediction methods.

Mapping Snow Depth Using Moderate Resolution Imaging Spectroradiometer Satellite Images: Application to the Republic of Korea

  • Kim, Daeseong;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.625-638
    • /
    • 2018
  • In this paper, we derive i) a function to estimate snow cover fraction (SCF) from a MODIS satellite image that has a wide observational area and short re-visit period and ii) a function to determine snow depth from the estimated SCF map. The SCF equation is important for estimating the snow depth from optical images. The proposed SCF equation is defined using the Gaussian function. We found that the Gaussian function was a better model than the linear equation for explaining the relationship between the normalized difference snow index (NDSI) and the normalized difference vegetation index (NDVI), and SCF. An accuracy test was performed using 38 MODIS images, and the achieved root mean square error (RMSE) was improved by approximately 7.7 % compared to that of the linear equation. After the SCF maps were created using the SCF equation from the MODIS images, a relation function between in-situ snow depth and MODIS-derived SCF was defined. The RMSE of the MODIS-derived snow depth was approximately 3.55 cm when compared to the in-situ data. This is a somewhat large error range in the Republic of Korea, which generally has less than 10 cm of snowfall. Therefore, in this study, we corrected the calculated snow depth using the relationship between the measured and calculated values for each single image unit. The corrected snow depth was finally recorded and had an RMSE of approximately 2.98 cm, which was an improvement. In future, the accuracy of the algorithm can be improved by considering more varied variables at the same time.

An Approximate Estimation of Snow Weight Using KMA Weather Station Data and Snow Density Formulae (기상청 관측 자료와 눈 밀도 공식을 이용한 적설하중의 근사 추정)

  • Jo, Ji-yeong;Lee, Seung-Jae;Choi, Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.92-101
    • /
    • 2020
  • To prevent and mitigate damage to farms due to heavy snowfall, snow weight information should be provided in addition to snow depth. This study reviews four formulae regarding snow density and weight used in extant studies and applies them in Suwon area to estimate snow weight in Korea. We investigated the observed snow depth of 94 meteorological stations and automatic weather stations (AWS) data over the past 30 years (1988-2017). Based on the spatial distribution of snow depth by area in Korea, much of the fresh snow cover, due to heavy snowfall, occurred in Jeollabuk-do and Gangwon-do. Record snowfalls occurred in Gyeongsangbuk-do and Gangwon-do. However, the most recent heavy snowfall in winter occurred in Gyeonggi-do, Gyeongsangbuk-do, and Jeollanam-do. This implies that even if the snow depth is high, there is no significant damage unless the snow weight is high. The estimation of snow weight in Suwon area yielded different results based on the calculation method of snow density. In general, high snow depth is associated with heavy snow weight. However, maximum snow weight and maximum snow depth do not necessarily occur on the same day. The result of this study can be utilized to estimate the snow weight at other locations in Korea and to carry out snow weight prediction based on a numerical model. Snow weight information is expected to aid in establishing standards for greenhouse design and to reduce the economic losses incurred by farms.

Development of a Stochastic Snow Depth Prediction Model Using a Bayesian Deep Learning Method (베이지안 딥러닝 기법을 이용한 확률적 적설심 예측 모델 개발)

  • Jeong, Youngjoon;Lee, Sang-ik;Lee, Jonghyuk;Seo, Byunghun;Kim, Dongsu;Seo, Yejin;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.35-41
    • /
    • 2022
  • Heavy snow damage can be prevented in advance with an appropriate security system. To develop the security system, we developed a model that predicts snow depth after a few hours when the snow depth is observed, and utilized it to calculate a failure probability with various types of greenhouses and observed snow depth data. We compared the Markov chain model and Bayesian long short-term memory models with varying input data. Markov chain model showed the worst performance, and the models that used only past snow depth data outperformed the models that used other weather data with snow depth (temperature, humidity, wind speed). Also, the models that utilized 1-hour past data outperformed the models that utilized 3-hour data and 6-hour data. Finally, the Bayesian LSTM model that uses 1-hour snow depth data was selected to predict snow depth. We compared the selected model and the shifting method, which uses present data as future data without prediction, and the model outperformed the shifting method when predicting data after 11-24 hours.

Estimation of Snow Damage and Proposal of Snow Damage Threshold based on Historical Disaster Data (재난통계를 활용한 대설피해 예측 및 대설 피해 적설심 기준 결정 방안)

  • Oh, YeoungRok;Chung, Gunhui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.325-331
    • /
    • 2017
  • Due to the climate change, natural disaster has been occurred more frequently and the number of snow disasters has been also increased. Therefore, many researches have been conducted to predict the amount of snow damages and to reduce snow damages. In this study, snow damages over last 21 years on the Natural Disaster Report were analyzed. As a result, Chungcheong-do, Jeolla-do, and Gangwon-do have the highest number of snow disasters. The multiple linear regression models were developed using the snow damage data of these three provinces. Daily fresh snow depth, daily maximum, minimum, and average temperatures, and relative humidity were considered as possible inputs for climate factors. Inputs for socio-economic factors were regional area, greenhouse area, farming population, and farming population over 60. Different regression models were developed based on the daily maximum snow depth. As results, the model efficiency considering all damage (including low snow depth) data was very low, however, the model only using the high snow depth (more than 25 cm) has more than 70% of fitness. It is because that, when the snow depth is high, the snow damage is mostly caused by the snow load itself. It is suggested that the 25 cm of snow depth could be used as the snow damage threshold based on this analysis.

Comparison of Snow Cover Fraction Functions to Estimate Snow Depth of South Korea from MODIS Imagery

  • Kim, Daeseong;Jung, Hyung-Sup;Kim, Jeong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.401-410
    • /
    • 2017
  • Estimation of snow depth using optical image is conducted by using correlation with Snow Cover Fraction (SCF). Various algorithms have been proposed for the estimation of snow cover fraction based on Normalized Difference Snow Index (NDSI). In this study we tested linear, quadratic, and exponential equations for the generation of snow cover fraction maps using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua satellite in order to evaluate their applicability to the complex terrain of South Korea and to search for improvements to the estimation of snow depth on this landscape. The results were validated by comparison with in-situ snowfall data from weather stations, with Root Mean Square Error (RMSE) calculated as 3.43, 2.37, and 3.99 cm for the linear, quadratic, and exponential approaches, respectively. Although quadratic results showed the best RMSE, this was due to the limitations of the data used in the study; there are few number of in-situ data recorded on the station at the time of image acquisition and even the data is mostly recorded on low snowfall. So, we conclude that linear-based algorithms are better suited for use in South Korea. However, in the case of using the linear equation, the SCF with a negative value can be calculated, so it should be corrected. Since the coefficients of the equation are not optimized for this area, further regression analysis is needed. In addition, if more variables such as Normalized Difference Vegetation Index (NDVI), land cover, etc. are considered, it could be possible that estimation of national-scale snow depth with higher accuracy.