• Title/Summary/Keyword: smooth muscle cell

Search Result 390, Processing Time 0.042 seconds

In vivo multiplex gene targeting with Streptococcus pyogens and Campylobacter jejuni Cas9 for pancreatic cancer modeling in wild-type animal

  • Chang, Yoo Jin;Bae, Jihyeon;Zhao, Yang;Lee, Geonseong;Han, Jeongpil;Lee, Yoon Hoo;Koo, Ok Jae;Seo, Sunmin;Choi, Yang-Kyu;Yeom, Su Cheong
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.26.1-26.14
    • /
    • 2020
  • Pancreatic ductal adenocarcinoma is a lethal cancer type that is associated with multiple gene mutations in somatic cells. Genetically engineered mouse is hardly applicable for developing a pancreatic cancer model, and the xenograft model poses a limitation in the reflection of early stage pancreatic cancer. Thus, in vivo somatic cell gene engineering with clustered regularly interspaced short palindromic repeats is drawing increasing attention for generating an animal model of pancreatic cancer. In this study, we selected Kras, Trp53, Ink4a, Smad4, and Brca2 as target genes, and applied Campylobacter jejuni Cas9 (CjCas9) and Streptococcus pyogens Cas9 (SpCas9) for developing pancreatic cancer using adeno associated virus (AAV) transduction. After confirming multifocal and diffuse transduction of AAV2, we generated SpCas9 overexpression mice, which exhibited high double-strand DNA breakage (DSB) in target genes and pancreatic intraepithelial neoplasia (PanIN) lesions with two AAV transductions; however, wild-type (WT) mice with three AAV transductions did not develop PanIN. Furthermore, small-sized Cjcas9 was applied to WT mice with two AAV system, which, in addition, developed high extensive DSB and PanIN lesions. Histological changes and expression of cancer markers such as Ki67, cytokeratin, Mucin5a, alpha smooth muscle actin in duct and islet cells were observed. In addition, the study revealed several findings such as 1) multiple DSB potential of AAV-CjCas9, 2) peri-ductal lymphocyte infiltration, 3) multi-focal cancer marker expression, and 4) requirement of > 12 months for initiation of PanIN in AAV mediated targeting. In this study, we present a useful tool for in vivo cancer modeling that would be applicable for other disease models as well.

The Effect of Dangguijakyak-san on Wound Healing (당귀작약산의 창상 회복에 대한 효과)

  • Yun-Jin Lee;Chang-Hoon Woo;Young-Jun Kim;Hyeon-Ji Kim;Hee-Duk An
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.33 no.3
    • /
    • pp.47-65
    • /
    • 2023
  • Objectives We evaluated the wound healing effects of Dangguijakyak-san (DJ) using C57BL/6 mice that were generated open wound. Methods The study was conducted with seven C57BL/6 mice assigned to each group, divided into the normal group, control group, vitamin E group, DJ low-dose group, DJ high-dose group. We measured total polyphenol, flavonoid contents, the size of the wound, liver function, pro-inflammatory cytokine activity in serum, inflammation-related proteins, adhesion molecules and chemokine proteins, collagen-related proteins in skin tissue and histopathological changes by H&E and Masson's staining. Results DJ treatment significantly reduced the area of the wound compared to the control group. Also, inflammatory cytokines were reduced and the expression of anti-inflammatory-related factors (interleukin-4 [IL-4] and IL-10) was significantly increased in the DJ treatment group. We identified that DJ treatment inhibits both pathways of inflammation, the mitogen-activated protein kinases and nuclear factor-κB pathway. Moreover, the protein expressions of Sirt1 (sirtuin 1), MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), and VCAM-1 (vascular cell adhesion molecule 1) were decreased by DJ administration. Also, the expression of α-smooth muscle actin and collagen type I alpha 1, collagen-related proteins, that help skin recovery was significantly increased in the DJ treatment group. Histopathologically, a relatively thin epithelial layer could be observed in the DJ administration group, as well as an increase in fibroblasts and collagen fibers. Conclusions These data suggest that DJ treatment is effective in wound healing, suppressing inflammatory proteins, increasing skin repair factors and improving histopathological changes caused by wounds.

Analysis of Potential Active Ingredients and Treatment Mechanism of Atractylodes Lancea(Thunb.) D.C and Magnolia Officinalis Rehder et Wilson for Dermatitis Accompanied by Pruritus Using Network Pharmacology (네트워크 약리학을 이용한 소양증을 동반한 피부 염증에 대한 창출(蒼朮) 및 후박(厚朴)의 잠재적 치료기전 탐색)

  • YeEun Hong;GwangYeel Seo;Byunghyun Kim;Kyuseok Kim;Haejeong Nam;YoonBum Kim
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.36 no.4
    • /
    • pp.30-50
    • /
    • 2023
  • Objectives : To investigate the active compounds and therapeutic mechanisms of Atractylodes Lancea(Thunb.) D.C. and Magnolia Officinalis Rehder et Wilson in the treatment of dermatitis accompanied by pruritus, as well as their potential to complement or replace standard drugs. Methods : We conducted the network pharmacological analysis. We selected effective ingredients among the active compounds of research target herbs. Then we explore pathway/terms of the common target proteins among research target herbs, fexofenadine and disease. Results : We selected 9 active compounds are selected from Atractylodes lancea and identified 231 target proteins. Among them, 74 proteins are associated with inflammatory skin diseases that cause pruritus. These proteins are involved in various pathways including, 'Nitric-oxide synthase regulator activity', 'Hydroperoxy icosatetraenoate dehydratase activity, Aromatase activity', 'RNA-directed DNA polymerase activity', 'Arachidonic acid metabolism', 'Peptide hormone processing', 'Chemokine binding' and 'Sterol biosynthetic process'. Additionally, coregenes are involved in 'IL-17 signaling pathway'. Similarly, we selected 2 active compounds from Magnolia officinalis and identified 133 target proteins. Among them, 33 proteins are related to inflammatory skin diseases that cause pruritus. These proteins are primarily involved in 'Vascular associated smooth muscle cell proliferation' and 'Arachidonic acid metabolism'. There is no significant difference between the pathways in which coregenes are involved. Conclusions : It is expected that Atractylodes Lancea will be able to show direct or indirect anti-pruritus and anti-inflammatory effects on skin inflammation accompanied pruritus through suppressing inflammation and protecting skin barrier. Meanwhile, it is expected that Magnolia Officinalis will only be able to show indirect anti-inflammation effects. Therefore, Atractylodes Lancea and fexofenadine are believed to complement each other, whereas Magnolia Officialinalis is expected to provide supplementary support on skin disease.

Extracellular $K^+$ Effects on the Mouse Aortic Endothelial Cell Contractility (쥐 대동맥 혈관 내피세포에서 세포 외 $K^+$에 의한 혈관 수축선 조절 기전)

  • 안재호;유지영
    • Journal of Chest Surgery
    • /
    • v.36 no.12
    • /
    • pp.887-893
    • /
    • 2003
  • External stimuli increases intracellular (IC) $Ca^{2+}$, which increases extracellular (EC) $K^{+}$. To verify $K^{+}$ effects on the vascular contraction, we performed an experiment using mouse aortic endothelial cell. Meterial and Method: We examined the mouse aortic contractility changes as we measured the IC $Ca^{2+}$ change and ionic current by using the voltage clamp technique under different conditions such as: increasing EC $K^{+}$, removing endothelial cell, giving L-NAME (N-nitro-L-arginine methyl ester) which suppress nitric oxide formation, Ouabain which control N $a^{+}$ - $K^{+}$ pump and N $i^{2+}$ which repress N $a^{+}$-C $a^{2+}$ exchanger Result: When we increased EC $K^{+}$ from 6 to 12 mM, there was no change in aortic contractility. Aorta contracted with more than 12 mM of EC $K^{+}$. Ace-tylcholine (ACh) induced relaxation was inhibited with EC $K^{+}$ from 6 to 12 mM, but was not found after de-endothelialization or L-NAME treatment. ATP or ACh increased IC $Ca^{2+}$ in cultured endothelium. After maximal increase of IC $Ca^{2+}$, increasing EC $K^{+}$ from 6 to 12 mM made IC $Ca^{2+}$ decrease and re-decreasing EC $K^{+}$ to 6 mM made IC $Ca^{2+}$ increase. Ouabain and N $i^{2+}$ masked the inhibitory effect of endothelium dependent relaxation by increased EC $K^{+}$. Conclusion: These data indicate that increase in EC $K^{+}$ relaxes vascular smooth muscle and reduces $Ca^{2+}$ in the endothelial cells which inhibit endothelium dependent relaxation. This inhibitory mechanism may be due to the activation of N $a^{+}$- $K^{+}$ pump and N $a^{+}$-C $a^{2+}$ exchanger. $a^{+}$-C $a^{2+}$ exchanger.r.

Transforming growth factor-β promoted vascular endothelial growth factor release by human lung fibroblasts (인간 폐섬유아세포에서 TGF-β 자극에 의한 VEGF 분비)

  • Park, Sang-Uk;Shin, Joo-Hwa;Shim, Jae-Won;Kim, Deok-Soo;Jung, Hye-Lim;Park, Moon-Soo;Shim, Jung-Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.8
    • /
    • pp.879-885
    • /
    • 2008
  • Purpose : The human lung fibroblast may act as an immunomodulatory cell by providing pro-inflammatory cytokines and chemokines, which are important in airway remodeling. Vascular endothelial growth factor (VEGF) induces mucosal edema and angiogenesis. Thymus and activation regulated chemokine (TARC) induces selective migration of T helper 2 cells. We investigated whether human lung fibroblasts produced VEGF and TARC, and the effects were augmented with the co-culture of fibroblasts and human bronchial smooth muscle cells (HBSMC), and whether dexamethasone can inhibit the proliferation and the release of VEGF in lung fibroblasts. Methods : Human lung fibroblasts were cultured with and without HBSMC, growth-arrested in serum-deprived medium, and pretreated with dexamethasone for 16 hours. After 24-hour stimulation with platelet derived growth factor-BB (PDGF-BB) and/or transforming growth factor-${\beta}$ (TGF-${\beta}$), culture supernatant was harvested for assays of VEGF and TARC. Cell proliferation was assayed using BrdU cell proliferation ELISA kit. Results : 1) The release of VEGF was significantly increased after stimulation with TGF-${\beta}$, and its release was augmented when co-stimulated with PDGF and TGF-${\beta}$. 2) VEGF release induced by PDGF or TGF-${\beta}$ was inhibited by dexamethasone. 3) There was no synergistic effect on the release of VEGF when human lung fibroblasts were co-cultured with HBSMC. 4) Dexamethasone did not suppress human lung fibroblasts proliferations. 5) Neither TGF-${\beta}$ nor PDGF induced TARC release from lung fibroblasts. Conclusion : Human lung fibroblasts may modulate airway remodeling by release of VEGF, but they have no synergistic effects when co-cultured with HBSMC. Dexamethasone suppresses VEGF release, not proliferation of lung fibroblast.

The Effect of Dexamethasone on Airway Goblet Cell Hyperplasia and Inflammation in $TiO_2$-Treated Sprague-Dawley Rats ($TiO_2$로 처치된 백서에서 기도내 배상세포 증식과 염증에 대한 Dexamethasone의 효과)

  • Lim, Gune-Il;Kim, Do-Jin;Park, Choon-Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.1
    • /
    • pp.37-48
    • /
    • 2000
  • Backgrounds : The pathophysiology of chronic airflow obstruction, such as bronchial asthma, is characterized by mucus hypersecretion, goblet cell hyperplasia(GCH), smooth muscle hypertrophy, and inflammatory cells infiltration. In fatal asthma patients, one distinct findings is mucus hypersecretion due to GCH. However, the mechanisms of GCH in these hypersecretory diseases remain still unknown. In this study, a rat model was rapidly induced with GCH by instillation of $TiO_2$, intratracheally. We intend to confirm GCH and association of concomitant inflammatory cells infiltration and to observe the effect of potent antiinflammatory agent, that is dexamethasone, on GCH with inflammatory cells. Methods : Twenty-one 8-weeks-old male Sprague-Dawley rats were divided into three groups. Endotoxinfree water was instilled intratracheally in group 1(control) ; $TiO_2$, was instilled in the group 2 ; and dexamethasone was injected intraperitoneally to group 3 before $TiO_2$ instillation. After 120 hours, all rats were sacrificed, and trachea, bronchi, and lungs were resected respectively. These tissues were made as paraffin blocks and stained as PAS for goblet cells and Luna stain for eosinophils. We calculated the ratio of goblet cell to respiratory epithelium and number of infiltrated eosinophils from each tissue. Results : (1) Fraction of goblet cells was significantly increased in group 2 than in group 1 in the trachea and in the main bronchus. (10.19$\pm$11.33% vs 4.09$\pm$8.28%, p<0.01 and 34.09$\pm$23.91% vs 3.61$\pm$4.84%, p<0.01, respectively). (2) Eosinophils were significantly increased in the airway of group 2 than that of group 1. (5.43$\pm$3.84% vs 0.17$\pm$0.47 in trachea and 47.71$\pm$16.91 vs 2.71$\pm$1.96 in main bronchi). (3) There was a positive correlation between goblet cells and eosinophils(r=0.719, p=0.001). (4) There was significant difference in the decrease of goblet cells after dexamethasone injection between group 2 and group 3 (p<0.01). Also, infiltration of eosinophils was suppressed by dexamethasone. Conclusion : We made an animal model of $TiO_2$-induced goblet cell hyperplasia. GCH was observed mainly in the main bronchi with concomitant eosinophilic infiltration. Both goblet cell hyperplasia and eosinophilic infiltration were suppressed by dexamethasone. This animal model may serve as a useful tool in understanding of the mechanism of GCH in chronic airway diseases.

  • PDF

Studies on the Mechanism of Contraction by Substance P in Rabbit Ileum (Substance P에 의한 가토 회장평활근의 수축기전에 대한 연구)

  • Jo, Se-Hun;Jung, Jin-Sup;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.18 no.2
    • /
    • pp.151-162
    • /
    • 1984
  • The mechanism of the contractile response of longitudial muscle of rabbit ileum to substance P (SP) has been investigated. The contractions in rabbit ileum under various conditions were recorded isometrically The following results were obtained. 1) The contractions by SP increased according to concentrations. SP·induced contraction was not sustained but faded rapidly at $10^{-7}M$. The response to the commutative addition of SP was decreased in comparison to the response to separate administration of each concentration . 2) The response to $10^{-8}M$ SP after 5 min application cf $10^{-7}M$ SP was increased with increasing the time interval between the administration of $10^{-7}$ and $10^{-8}M$ SP. 3) The treatment of rabbit ileum by $10^{-7}M$ SP for 5 min didn't decrease the response to $10^{-6}M$ acetylcholine. 4) $10^{-6}M$ atropine had no effect of the contractile response to $10^{-7}M$ SP. The response to $10^{-7}M$ SP was normal or subnormal in the presence of 3 mM tetraethylammonium(TEA). 5) 100k solution, $10^{-4}M$ ouabain, and Na-free solution inhibited the response to $10^{-8}M$ SP and 3 mM TEA completely, and to $10^{-7}M$ SP incompletely. 3 mM TEA induced a considerable contraction in K-free solution, but $10^{-8}M$ SP didn't induce the contraction. $10^{-6}M$ norepinephrine decreased the contractile responses to SP and TEA. 6) The contractile response to $10^{-7}M$ SP was dependent on the extracellular $Ca^{2+}$ concentrations to 1.8 mM. 7) The contractile response to $10^{-7}M$ SP remained 15% of the maximal response after bathing the ileum in a Ca-free solution for 2.5 min. 8) The responsiveness to SP was completely lost within 10 min of bathing in Ca-free solution, but was restored by the exposure to $Ca^{2+}$. The restorative effect of $Ca^{2+}$ depended on the concentration of $Ca^{2+}$, and on time for which the tissue exposed to this $Ca^{2+}$ concentration. These results suggest that there are two mechanisms of the action by which the low concentrations of substance P causes the contraction of intestinal smooth muscle: the reduction of K conductance and a mechanism dependent on the extracellular $Ca^{2+}$, and that high concentration of SP may elicit a contraction by releasing $Ca^{2+}$ from an intracellular store, which is not as sensitive to removal of extracellular $Ca^{2+}$ or as easily accessible to EGTA as the extracellular space of the muscle. The location of this store is not known; it may be associated with the internal side of the cell membrane.

  • PDF

Effects of Potassium-Channel Opener on Thallium-201 Kinetics: In-vitro Study in Rat Myocyte Preparations and In-vivo Mice Biodistribution Study (K-통로개방제가 배양심근세포와 생쥐 체내의 Thallium-201역동학에 미치는 영향)

  • Lee, Jae-Tae;Kim, Eun-Ji;Ahn, Byeong-Cheol;Sohn, Kang-Kyun;Lee, Kyu-Bo;Ha, Jeoung-Hee;Kim, Chun-K.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.4
    • /
    • pp.507-515
    • /
    • 1996
  • Background : Potassium channel opener (K-opener) opens ATP-sensitive K'-channel located at cell membrane and induces potassium efflux from cytosol, resulting in intracellular hyperpolarization. Newly synthesized K-opener is currently examined for pharmacologic potency by means of rubidium release test from smooth muscle strip pre-incubated with Rb-86. Since in-vivo behavior of thallium is similar to that of rubidium, we hypothesized that K-opener can alter T1-201 kinetics in vivo. Purpose : This study was prepared to investigate the effects of pinacidil (one of potent K-openers) on the T1-201 uptake and clearance in cultured myocyte, and in-vivo biodistribution in mice. Methods : Spontaneous contracting myocytes were prepared to imitate in-vivo condition from 20 hearts of 3-5 days old Sprague-Dawley rat and cultured for 3-5 days before use ($5{\times}10^5$ cells/ml). Pinacidil was dissolved in 10% DMSO solution at a final concentration of 100nM or l0uM and was co-incubated with T1-201 in HBSS buffer for 20-min to evaluate its effect on cellular T1-uptake, or challenged to cell preparation pre-incubated with T1-201 for washout study. Two, 40 or $100{\mu}g$ of pinacidil was injected intravenously into ICR mice at 10 min after $5{\mu}Ci$ T1-201 injection, and organ uptake and whole body retention rate were measured at different time points. Results : Co-incubation of pinacidil with T1-201 resulted in a decrease in T1-201 uptake into cultured myocyte by 1.6 to 2.5 times, depending on pinacidil concentration and activity of T1-201 used. Pinacidil enhanced T1-201 washout by 1.6-3.1 times from myocyte preparations pre-incubated with T1-201. Pinacidil treatment appears to be resulted in mild decreases in blood and liver activity in normal mice, in contrast, renal and cardiac uptake were mildly decreased in a dose dependent manner. Whole body retention ratios of T1-201 were lower at 24 hour after injection with $100{\mu}g$ of pinacidil than control. Conclusion : These results suggest that treatment with K-opener may affect the interpretation of T1-201 myocardial images, due to decreasing thallium accumulation and enhancing washout from myocardium.

  • PDF

The Effect of Hydrogen Peroxide on Inducible Nitric Oxide Synthase Expression in Murine Macrophage RA W264.7 Cells (Murine macrophage RAW264.7에서 과산화수소가 유발형 산화질소 합성효소의 발현에 미치는 영향)

  • Ahn, Joong-Hyun;Song, Jeong-Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.2
    • /
    • pp.172-183
    • /
    • 1999
  • Background: Nitric oxide is a short-lived effector molecule derived from L-arginine by the nitric oxide synthase(NOS). Nitric oxide plays a role in a number of physiologic and pathophysiologic functions including host defense, edema formation, and regulation of smooth muscle tone. Some kinds of cells including macrophage are known to produce large quantities of nitric oxide in response to inflammatory stimuli such as interleukin-$1\beta$(IL-$1\beta$), tumor necrosis factor-$\alpha$(TNF-$\alpha$), interferon-$\gamma$(IFN-$\gamma$) and lipopolysaccharide(LPS). Reactive oxygen species are also known to be important in the pathogenesis of acute cell and tissue injury such as acute lung injury model Methods: Using the RA W264.7 cells, we have examined the ability of oxidant hydrogen peroxide($H_2O_2$) to stimulate nitric oxide production and inducible NOS mRNA expression. Also, we have examined the effects of NOS inhibitors and antioxidants on $H_2O_2$ induced nitric oxide production. Results: Stimulation of RAW264.7 cells with combinations of 100 ng/ml IL-$1\beta$, 100 ng/ml TNF-$\alpha$, and 100 U/ml IFN-$\gamma$ or 100 U/ml IFN-$\gamma$ and $1{\mu}g/ml$ LPS induced the synthesis of nitric oxide as measured by the oxidation products nitrite($NO_2^-$) and nitrate($NO_3^-$). Addition of $250 {\mu}M-2$ mM $H_2O_2$ to the cytokines significantly augmented the synthesis of $NO_2^-$ and $NO_3^-$(p<0.05). When cells were incubated with increasing concentrations of $H_2O_2$ in the presence of IL-$1\beta$, TNF-$\alpha$ and IFN-$\gamma$ at constant level, the synthesis of $NO_2^-$ and $NO_3^-$ was dose-dependently increased(p<0.05). $N^G$-nitro-L-arginine methyl ester(L-NAME), dose dependently, significantly inhibited the formation of $NO_2^-$ and $NO_3^-$ in cells stimulated with LPS, IFN-$\gamma$ and $H_2O_2$ at constant level(p<0.05). Catalase significantly inhibited the $H_2O_2$-induced augmentation of cytokine-induced $NO_2^-$ and $NO_3^-$ formation(p<0.05). But, boiled catalase did not produce a significant inhibition in comparison with the native enzyme. Another antioxidant 2-mercaptoethanol and orthophenanthroline dose-dependently suppressed $NO_2^-$ and $NO_3^-$ synthesis(p<0.05). Northern blotting demonstrated that H:02 synergistically stimulated the cytokine-induced iNOS mRNA expression in RA W264.7. Conclusion: These results suggest that $H_2O_2$ contributes to inflammatory process by augmenting the iNOS expression and nitric oxide synthesis induced by cytokines.

  • PDF

Apolipoprotein A1 Inhibits TGF-β1-Induced Epithelial-to-Mesenchymal Transition of Alveolar Epithelial Cells

  • Baek, Ae Rin;Lee, Ji Min;Seo, Hyun Jung;Park, Jong Sook;Lee, June Hyuk;Park, Sung Woo;Jang, An Soo;Kim, Do Jin;Koh, Eun Suk;Uh, Soo Taek;Kim, Yong Hoon;Park, Choon Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.3
    • /
    • pp.143-152
    • /
    • 2016
  • Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease characterized by the accumulation of excessive fibroblasts and myofibroblasts in the extracellular matrix. The transforming growth factor ${\beta}1$ (TGF-${\beta}1$)-induced epithelial-to-mesenchymal transition (EMT) is thought to be a possible source of fibroblasts/myofibroblasts in IPF lungs. We have previously reported that apolipoprotein A1 (ApoA1) has anti-fibrotic activity in experimental lung fibrosis. In this study, we determine whether ApoA1 modulates TGF-${\beta}1$-induced EMT in experimental lung fibrosis and clarify its mechanism of action. Methods: The A549 alveolar epithelial cell line was treated with TGF-${\beta}1$ with or without ApoA1. Morphological changes and expression of EMT-related markers, including E-cadherin, N-cadherin, and ${\alpha}$-smooth muscle actin were evaluated. Expressions of Smad and non-Smad mediators and TGF-${\beta}1$ receptor type 1 ($T{\beta}RI$) and type 2 ($T{\beta}RII$) were measured. The silica-induced lung fibrosis model was established using ApoA1 overexpressing transgenic mice. Results: TGF-${\beta}1$-treated A549 cells were changed to the mesenchymal morphology with less E-cadherin and more N-cadherin expression. The addition of ApoA1 inhibited the TGF-${\beta}1$-induced change of the EMT phenotype. ApoA1 inhibited the TGF-${\beta}1$-induced increase in the phosphorylation of Smad2 and 3 as well as that of ERK and p38 mitogen-activated protein kinase mediators. In addition, ApoA1 reduced the TGF-${\beta}1$-induced increase in $T{\beta}RI$ and $T{\beta}RII$ expression. In a mouse model of silica-induced lung fibrosis, ApoA1 overexpression reduced the silica-mediated effects, which were increased N-cadherin and decreased E-cadherin expression in the alveolar epithelium. Conclusion: Our data demonstrate that ApoA1 inhibits TGF-${\beta}1$-induced EMT in experimental lung fibrosis.