• Title/Summary/Keyword: smoke exhaust

Search Result 308, Processing Time 0.025 seconds

The Analysis on the Effect of Supply Air Velocities by Location of Supply Air Damper on the Performance Efficiency of the Smoke Exhaust Systems (공기유입구 위치에 따른 유입공기의 풍속이 배연시스템 성능효율에 미치는 영향 연구)

  • Yeo, Yong-Ju;Lim, Chae-Hyun;Kim, Hak-Jung;Kim, Bum-Gyu;Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.20-27
    • /
    • 2010
  • In smoke control systems the amount of air supply is almost the same as that of smoke exhaust. This study analyzed the effect of supply air velocity on the smoke exhaust behavior using FDS tool. The results showed that fire plume can be disheveled by the rapid air velocities developed when the air supply inlet is located near the fire plume. Disheveled smoke caused the rapid descent of smoke layer level and the reduced visibility. To increase the efficiency of smoke exhaust systems supply air inlet should be located sufficiently far from the location of the fire plume.

A Study of Heat and Smoke Exhaust to Subway Tunnel Direction (지하철 터널부로의 열 및 연기배출에 관한 연구)

  • Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.1-8
    • /
    • 2004
  • This study aims to derive the operation method of a comprehensive ventilation system which is capable of providing passengers with safe exit paths from platforms in onboard fire situations. To accomplish this, the airflow distributions in subway platforms under 6 types of tunnel vent system were calculated in addition to having analyzed diffusion behaviors of smoke and heat exhaust in such states by performing 6 kinds of different ventilation scenarios in a 3-D Fire Dynamic Simulation (FDS) simulation model. In order to recommend the mechanical smoke exhaust operation mode, Subway Environmental Simulation(SES) is used to predict the airflow of the inlet and outlet tunnel for the subway station to clarify the safety evaluation fir the heat and smoke exhaust on subway fire events.

The Influence on the Stack Effect with the Opening of Smoke Ventilators in High-rise Buildings (초고층 건축물에서 배연창 개방이 연돌효과에 미치는 영향)

  • Lim, Chae-Hyun;Kim, Bum-Gyue;Yeo, Yong-Ju;Park, Yong-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.209-213
    • /
    • 2008
  • The effects on the performance of natural smoke exhaust ventilators installed in high-rise buildings were analyzed depending on the wind velocities and smoke temperatures using CONTAMW tool. The results showed that the smoke exhaust ventilators can maintain given performances in such conditions as low smoke temperatures and low wind velocities. However, high smoke temperatures and high wind velocities can prevent the smoke ventilators to exhaust smokes from the fire room. Significant changes in stack effects in high-rise buildings can also occur with the opening of smoke ventilators in the fire floor.

  • PDF

Simultaneous Reduction of Smoke and NOx by Dimethoxy Methane and Cooled EGR Method in a DI Diesel Engine (직접 분사식 디젤기관에서 Dimethoxy Methane과 Cooled EGR방법을 이용한 Smoke와 NOx의 동시저감)

  • 최승훈;오영택;권규식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.66-72
    • /
    • 2004
  • In this study, the effects of oxygen component in fuel and exhaust gas recirculation(EGR) method on the exhaust emissions has been investigated for a D.I. diesel engine. It was tested to estimate change of exhaust emission characteristics for the commercial diesel fuel and oxygenate blended fuel which has five kinds of blending ratio. Dimethoxy methane(DMM) contains oxygen component 42.5% in itself, and it is a kind of effective oxygenated fuel for reduction of smoke emission. It was affirmed that smoke emission was decreased with increasing of DMM blending ratio. But, NOx emission was increased compared with commercial diesel fuel. It was needed a NOx reduction counterplan that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with DMM blended fuel and cooled EGR method(1015%).

A study on the optimal ventilation and smoke exhaust systems in case of fire in subway stations installed with PSD (PSD가 설치된 지하철 역사 내 화재 시 최적 배연시스템 연구)

  • Kim, Hyo-Gyu;Yoo, Ji-Oh;Kim, Doo-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.527-539
    • /
    • 2018
  • The subway used by many passengers is required to maintain a safe and comfortable environment and PSD (Platform Screen Door) must be installed in the platform after reinforcing the standard in 2003. In the previous research, in case of subway fire to control it, it is necessary to design the optimal ventilation and smoke exhaust system according to equipment capacity of the smoke exhaust system. Therefore, in this study, based on the results of previous research, three-dimensional numerical analysis was performed for the CO gas and smoke flow by the subway ventilation system in case of platform fire. As a result of this study, it was found that in case of emergency, if only the upper-level smoke exhaust system is activated, the risk of evacuation is high due to CO gas (653.8 ppm) and smoke concentration ($768.4mg/m^3$). And when all the smoke exhaust systems are activated and only the fire side PSD is opened, CO gas (36.0 ppm) and smoke concentration ($26.2mg/m^3$) are detected and the propagation range of smoke flow was reduced. When all the smoke exhaust systems are activated and only the fire side PSD is closed, it was analyzed as the most effective ventilation mode in the evacuation environment due to the absence of smoke-recirculation.

CHARACTERISTICS OF PERFORMANCE AND EXHAUST EMISSION OF DIESEL ENGINES BY CHANGES IN FUEL PROPERTIES AND APPLICATION OF EGR

  • Choi, S.H.;Oh, Y.T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.179-184
    • /
    • 2007
  • In this study, the potential use of oxygenated fuels such as ethylene glycol mono-normal butyl ether (EGBE) was investigated in an attempt to reduce the emission of exhaust smoke from diesel engines. Effects of the combustion method on exhaust emission of DI and IDI diesel engines were also examined. Since EGBE is composed of approximately 27.1% oxygen, this is one of several potential oxygenated fuels that could reduce the smoke content of exhaust gas. EGBE blended fuels have been proven to reduce smoke emission remarkably compared to the conventional commercial fuels. The test was conducted with single and four cylinder, four stroke, DI and IDI diesel engines. The study showed that a simultaneous reduction of smoke and NOx emission could be achieved by the combination of oxygenated blend fuels and the cooled EGR method in both DI and IDI diesel engines. It was also found that a reduction rate of exhaust emission in a DI engine was larger than an IDI diesel engine.

The Effect of Oxygen in Fuel on the Exhaust Gas Emissions in Diesel Engine (디젤기관에서 연료중의 산소성분이 배기가스 배출특성에 미치는 영향)

  • 유경현;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.59-67
    • /
    • 2000
  • Recently the world is faced with the very serious problems related to the increasing use of the conventional petroleum fuels. THe air pollutions in big cities were also occurred by the exhaust emissions from automobiles. many researchers have been attracted various oxygenated fuels as an alternative fuel and a renewable fuel for the measure of these problems. In this study the effect of oxygen in fuel on the exhaust gas emissions has been investigated with oxygenated fuels as an alternative fuel for diesel engine. The exhaust gas emission were investigated by comparing with that of the diesel fuel. The vegetable fuel oil such as soybean oil gives lower smoke level than that with diesel fuel. Furthermore the smoke emission is more affected by the oxygen content in fuel than by the fuel viscosity. This study concluded that the fuels including oxygen might be a good measure to reduce smoke in diesel engine because the oxygen strongly influenced the combustion process.

  • PDF

A transient CFD simulation of ventilation system operation for smoke control in a subway station equipped with a Platform Screen Door(PSD) when a train under fire is approaching the station (화재열차의 역사 접근 시 PSD가 설치된 역사 제연을 위한 환기장치 운전 비정상상태 해석)

  • Shin, Kyu-Ho;Hur, Nahm-Keon;Won, Chan-Shik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.269-272
    • /
    • 2006
  • The heat and smoke which generated by subway under fire is one of the most harmful factor in air tighten underground station. To prevent this, Trackway Exhaust System(TES) can be used. The heat released from the train running in the tunnel raises the temperature at the platform and the trackway, and thus proper ventilation system is required for comfortable underground environment. When the fire is occurred, TES is operated as smoke exhaust mode from normal ventilation mode. In the present study, the subway station which is one of the line number 9 in Seoul subway is modeled, and fired situation is simulated with several ventilation mode of ventilation system in trackway. For this simulation whole station is modeled. Non steady state 3D simulation which considered train under fire is entering to the station is performed. Temperature and smoke distribution in platform and trackway are compared. To represent heat by fire, heat flux was given to the fired carriage, also to describe smoke by fire, concentration of CO is represented. As the result of present study, temperature and smoke distribution is different as the method of ventilation in trackway and platform is changed. In over side of trackway, the fan must be operated as exhaust mode for efficient elimination of heat and smoke, and supply mode of fan operation in under side shows better distribution of heat and smoke. The ventilation system which is changed from ventilation mode to exhaust mode can be applied to control heat and smoke under fire.

  • PDF

The Influence of Wind Conditions on the Performance of Smoke Ventilation in High-rise Building Fires (초고층건물 화재시 외기바람이 배연성능에 미치는 영향)

  • Kim, Beom-Gyu;Yim, Chae-Hyun;Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.63-73
    • /
    • 2016
  • This study examined the effects of the wind conditions, such as wind velocity and wind directions, on the performance of the mechanical smoke exhaust systems for high-rise building fires. A scaled model design and CFD simulations were used to verify the effects both quantitatively and qualitatively. The results showed that the smoke exhaust velocity of the mechanical exhaust system can be reduced by up to 17% at a wind velocity of 5 m/s (equivalent to an outdoor wind speed of 16 m/s) and a wind direction of ${\theta}=5^{\circ}$. In addition, the angle of the outdoor wind direction below ${\theta}=25^{\circ}$ had a significantly influence on the smoke exhaust flow rate and reduced exhaust performance of the smoke exhaust system in a fire.

A Study on the Effective Fire and Smoke Control in Semi-Transverse Ventilation (균일배기 환기방식에서의 배연특성에 관한 연구)

  • Jeon, Yong-Han;Kim, Jong-Yoon;Seo, Young-Ho;Yoo, Oh-Ji;Han, Sang-Pil
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.90-94
    • /
    • 2010
  • In this study it is intended to review the moving characteristics of smoke by performing visualization simulation for the calculation of the optimal smoke exhaust air volume in case a fire occurs in tunnels where transverse ventilation is applied, and to obtain basic data necessary for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions under various conditions. As a result of this study, if it was assumed 0 critical velocity in the tunnel, the smoke exhaust air volume was limited within 250 meter in the road-tunnel disaster prevention indicator and the exhaust efficiency was from 55.1% to 95.8% in the result of this study. If the wind velocity is in the tunnel, the exhaust rate intends to increase rapidly and the exhaust efficiency is decreased. In addition, if the wind velocity is increased, the exhaust rate should be increased in compared with the generation rate of smoke in maximum 1.8 or 1.04 times. In this study, when the wind velocity is in the tunnel, the limited exhaust rate is $84m^3/s{\cdot}250m$. And if it was assumed 1.75 m/s critical velocity in the tunnel, the exhaust rate would be defined $393m^3/s{\cdot}250m$($Q_E$ = 80 + 5Ar).