• Title/Summary/Keyword: smart sensors

Search Result 1,516, Processing Time 0.03 seconds

Applications of fiber optic sensors for structural health monitoring

  • Kesavan, K.;Ravisankar, K.;Parivallal, S.;Sreeshylam, P.
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.355-368
    • /
    • 2005
  • Large and complex structures are being built now-a-days and, they are required to be functional even under extreme loading and environmental conditions. In order to meet the safety and maintenance demands, there is a need to build sensors integrated structural system, which can sense and provide necessary information about the structural response to complex loading and environment. Sophisticated tools have been developed for the design and construction of civil engineering structures. However, very little has been accomplished in the area of monitoring and rehabilitation. The employment of appropriate sensor is therefore crucial, and efforts must be directed towards non-destructive testing techniques that remain functional throughout the life of the structure. Fiber optic sensors are emerging as a superior non-destructive tool for evaluating the health of civil engineering structures. Flexibility, small in size and corrosion resistance of optical fibers allow them to be directly embedded in concrete structures. The inherent advantages of fiber optic sensors over conventional sensors include high resolution, ability to work in difficult environment, immunity from electromagnetic interference, large band width of signal, low noise and high sensitivity. This paper brings out the potential and current status of technology of fiber optic sensors for civil engineering applications. The importance of employing fiber optic sensors for health monitoring of civil engineering structures has been highlighted. Details of laboratory studies carried out on fiber optic strain sensors to assess their suitability for civil engineering applications are also covered.

Distributed crack sensors featuring unique memory capability for post-earthquake condition assessment of RC structures

  • Chen, Genda;McDaniel, Ryan;Sun, Shishuang;Pommerenke, David;Drewniak, James
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.141-158
    • /
    • 2005
  • A new design of distributed crack sensors based on the topological change of transmission line cables is presented for the condition assessment of reinforced concrete (RC) structures during and immediately after an earthquake event. This study is primarily focused on the performance of cable sensors under dynamic loading, particularly a feature that allows for some "memory" of the crack history of an RC member. This feature enables the post-earthquake condition assessment of structural members such as RC columns, in which the earthquake-induced cracks are closed immediately after an earthquake event due to gravity loads, and are visually undetectable. Factors affecting the onset of the feature were investigated experimentally with small-scale RC beams under cyclic loading. Test results indicated that both crack width and the number of loading cycles were instrumental in the onset of the memory feature of cable sensors. Practical issues related to dynamic acquisition with the sensors are discussed. The sensors were proven to be fatigue resistant from shake table tests of RC columns. The sensors continued to show useful performance after the columns can no longer support additional loads.

Measurement of temperature change on coil column unit using FBG sensors during thermal response test: A study for geothermal energy system

  • Young-Sang Kim;Duc-Thang Hoang;Gyeong-O Kang;Ba Huu Dinh
    • Smart Structures and Systems
    • /
    • v.34 no.1
    • /
    • pp.41-50
    • /
    • 2024
  • The accurate measurement of temperature in the ground source heat pump system is crucial for assessing the thermal response of the system and validating the numerical model for parametric study, which is necessary for the thermal performance evaluation of the geothermal energy system. Conventional temperature sensors have some disadvantages such as they are difficult to install, and their position can be shifted during the backfill process of the ground heat exchanger. In this study, Fiber Bragg Grating (FBG) sensors were used to measure the temperature change of a recently developed ground heat exchanger (Coil Column Unit, CCU). FBG sensors were first calibrated in a thermal chamber alongside a correlation sensor (RTD sensor). The calibrated sensors were then mounted on the pipe surface at each spiral of the CCU to measure how temperature changes during the in-door mockup thermal response test. Finally, the measurement results of the FBG sensors were verified with a finite element coded program. The results indicated that the temperature difference between the numerical analysis and the experiment was less than 1%, which is significantly lower than that of the previous study using the RTD sensors. Therefore, it is feasible to apply FBG sensors for temperature measurement during the operation of the TRT of the geothermal energy system.

Implementation of Device Driver for Virtual Machine Based-on Android (Android 가상머신을 위한 디바이스 드라이버 구현)

  • Kim, Ho-Sung;Seo, Jong-Kyoun;Park, Han-Su;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.1017-1023
    • /
    • 2015
  • The amount of smart phones has increased exponentially. Due to the periodic release of high-performance smart phones and upgraded operating system, new smart phones become out-dated over 1 or 2 years. In order to solve environmental constraints of these smart phones, virtualization technology using Thin-Client terminal has been developed. However, in the case of Virtual Machine(VM), the applications associated with sensors and a GPS device can not run because they are not included. In this paper, by implementing the device driver for Android running in a virtual machine in the x86-based systems, it is to provide Android virtualization capabilities such as using the latest smart phones in the virtual machine environment. It would like to propose a method that the virtual device driver receives sensors and GPS information from the old Android smart phones(Thin-Client) that actually work and run as if the real device exists.

Smart Attendance Checking System based on BLE using a Beacon (BLE 기반의 비콘을 이용한 스마트 출석 확인 시스템)

  • Ahn, Sung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.209-214
    • /
    • 2016
  • In an environment of IoT services, sensors to track things and human activities are included as an essential element and smart phone is actively used as a means of collecting and processing information from sensors. Especially, wireless communication and NFC provided by the smart phone are key technologies for exchanging information between participants of IoT service. In this paper, we propose and implement the smart attendance checking system based on BLE using a beacon for improving the quality of a university lecture by processing attendance information automatically. Proposed system uses the beacon sensor for being aware of attendance information and the smart phone for receiving and processing this information. The implemented system has the benefit to improve the lecture quality because a professor can minimize attendance checking time and spend a lot of time on the lecture.

A Fundamental Study on Leak Detection System for Water Supply Valve Using Smart Bolt (상수도 밸브 누수 탐지용 스마트 볼트 적용의 기초 연구)

  • Park, Chul;Kim, Young-seok;Jung, Hae-Wook;Choi, Sang-sik;Lee, Yong-Beom
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.144-154
    • /
    • 2020
  • Purpose: This paper is a fundamental study on the applicability of the smart bolt developed for monitoring system to detect the leakage of water supply valve. Method: A leak detection experiments were conducted using the smart bolt having embedded strain sensors and accelerometer. The smart bolt used in study meets the allowable criteria of torque and tensile stress for water supply system, and it can be applied to a joint of the water supply valve by behaving well within the allowable limits. Result: As a result of the simulated leak tests, a leak signal at the valve leak point was detected in a band of 60Hz, and the main pipe leaking point was observed to produce a leak signal having much higher frequency than that of the valve leak point. This seems to result in a total coupled vibration under unconfined conditions of the pipes. Conclusion: The smart bolts appeared applicable to detecting a leaking signal from the water supply valve.

IoT based Smart Health Service using Motion Recognition for Human UX/UI (모션인식을 활용한 Human UI/UX를 위한 IoT 기반 스마트 헬스 서비스)

  • Park, Sang-Joo;Park, Roy C.
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • In this paper, we proposed IoT based Smart Health Service using Motion Recognition for Human UX/UI. Until now, sensor networks using M2M-based u-healthcare are using non-IP protocol instead of TCP / IP protocol. However, in order to increase the service utilization and facilitate the management of the IoT-based sensor network, many sensors are required to be connected to the Internet. Therefore, IoT-based smart health service is designed considering network mobility because it is necessary to communicate not only the data measured by sensors but also the Internet. In addition, IoT-based smart health service developed smart health service for motion detection as well as bio information unlike existing healthcare platform. WBAN communications used in u-healthcare typically consist of many networked devices and gateways. The method proposed in this paper can easily cope with dynamic changes even in a wireless environment by using a technology supporting mobility between WBAN sensor nodes, and systematic management is performed through detection of a user's motion.

  • PDF

Enhancing Security Gaps in Smart Grid Communication

  • Lee, Sang-Hyun;Jeong, Heon;Moon, Kyung-Il
    • International Journal of Advanced Culture Technology
    • /
    • v.2 no.2
    • /
    • pp.7-10
    • /
    • 2014
  • In order to develop smart grid communications infrastructure, a high level of interconnectivity and reliability among its nodes is required. Sensors, advanced metering devices, electrical appliances, and monitoring devices, just to mention a few, will be highly interconnected allowing for the seamless flow of data. Reliability and security in this flow of data between nodes is crucial due to the low latency and cyber-attacks resilience requirements of the Smart Grid. In particular, Artificial Intelligence techniques such as Fuzzy Logic, Bayesian Inference, Neural Networks, and other methods can be employed to enhance the security gaps in conventional IDSs. A distributed FPGA-based network with adaptive and cooperative capabilities can be used to study several security and communication aspects of the smart grid infrastructure both from the attackers and defensive point of view. In this paper, the vital issue of security in the smart grid is discussed, along with a possible approach to achieve this by employing FPGA based Radial Basis Function (RBF) network intrusion.

Application of Fuzzy Logic to Smart Decision of Smart Sensor System

  • Pham, Van-Su;Linh Mai;Giwan Yoon;Kim, Dong-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.174-176
    • /
    • 2003
  • This paper considers the application of Fuzzy Logic to Smart Decision process of Smart Sensor system that interprets and response to the change of environmental parameters. The considered system consists of three sensors: temperature sensor, humidity sensor and pressure sensor. The smartness of system is constituted by the applying of Fuzzy Logic. The paper discusses the technical details of the application of Fuzzy Logic for making the system to be smarter.

Wearable Human Health-monitoring Band using Inkjet-printed Flexible Temperature Sensor

  • Han, Dong Cheul;Shin, Han Jae;Yeom, Se Hyeok;Lee, Wanghoon
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.301-305
    • /
    • 2017
  • This paper presents a wearable human health-monitoring band. The band consists of a body temperature detector (BTD) and a hear rate detector (HRD). The BTD and HRD are realized using an inkjet-printed flexible temperature sensor and a commercial heart rate sensor module, respectively. The sensitivity of the fabricated BTD was found to be $-31/^{\circ}C$ with a linearity of 99.82%. The HRD using the commercial heart rate sensor module has a good performance with a standard deviation of 0.85 between the data of a commercial smart watch and the fabricated HRD.