• Title/Summary/Keyword: smart sensors

Search Result 1,499, Processing Time 0.029 seconds

Design of Software Quality Evaluation Model for IoT (IoT 기반 SW 품질평가 모델)

  • Chung, Su-min;Choi, Jae-hyun;Park, Jea-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1342-1354
    • /
    • 2016
  • As Internet, and hardware technology are in rapid process, using rate and penetration rate of Internet of Things are increasing. Internet of Things is the physical objects with network which embedded with electronics, software, sensors, and network. Smart Home-kit to operate refrigerators, washing machines, light bulbs, and such internet of things by a smartphone has been realized. However, it is difficult to use a good quality of software based on IoT. It is because that the study related to quality evaluation of software based on IoT is deficient compared with increase amount of IoT devices. Software based on IoT includes mobility, transportability, real time accessibility and hardware characteristics. Therefore, it is necessary to have differentiated quality standards and quality model. Software quality evaluation model for IoT is proposed to satisfy these needs. Evaluation model is mapped by characteristics of IoT software based on ISO/IEC 25000's quality characteristics. Scenario based studies were applied to quality model for verification.

S-FDS : a Smart Fire Detection System based on the Integration of Fuzzy Logic and Deep Learning (S-FDS : 퍼지로직과 딥러닝 통합 기반의 스마트 화재감지 시스템)

  • Jang, Jun-Yeong;Lee, Kang-Woon;Kim, Young-Jin;Kim, Won-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.50-58
    • /
    • 2017
  • Recently, some methods of converging heterogeneous fire sensor data have been proposed for effective fire detection, but the rule-based methods have low adaptability and accuracy, and the fuzzy inference methods suffer from detection speed and accuracy by lack of consideration for images. In addition, a few image-based deep learning methods were researched, but it was too difficult to rapidly recognize the fire event in absence of cameras or out of scope of a camera in practical situations. In this paper, we propose a novel fire detection system combining a deep learning algorithm based on CNN and fuzzy inference engine based on heterogeneous fire sensor data including temperature, humidity, gas, and smoke density. we show it is possible for the proposed system to rapidly detect fire by utilizing images and to decide fire in a reliable way by utilizing multi-sensor data. Also, we apply distributed computing architecture to fire detection algorithm in order to avoid concentration of computing power on a server and to enhance scalability as a result. Finally, we prove the performance of the system through two experiments by means of NIST's fire dynamics simulator in both cases of an explosively spreading fire and a gradually growing fire.

Freshness Monitoring of Raw Salmon Filet Using a Colorimetric Sensor that is Sensitive to Volatile Nitrogen Compounds (휘발성 질소화합물 감응형 색변환 센서를 활용한 연어 신선도 모니터링)

  • Kim, Jae Man;Lee, Hyeonji;Hyun, Jung-Ho;Park, Joon-Shik;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.93-99
    • /
    • 2020
  • A colorimetric paper sensor was used to detect volatile nitrogen-containing compounds emitted from spoiled salmon filets to determine their freshness. The sensing mechanism was based on acid-base reactions between acidic pH-indicating dyes and basic volatile ammonia and amines. A sensing layer was simply fabricated by drop-casting a dye solution of bromocresol green (BCG) on a polyvinylidene fluoride substrate, and its color-change response was enhanced by optimizing the amounts of additive chemicals, such as polyethylene glycol, p-toluene sulfonic acid, and graphene oxide in the dye solution. To avoid the adverse effects of water vapor, both faces of the sensing layer were enclosed by using a polyethylene terephthalate film and a gas-permeable microporous polytetrafluoroethylene sheet, respectively. When exposed to basic gas analytes, the paper-like sensor distinctly exhibited a color change from initially yellow, then to green, and finally to blue due to the deprotonation of BCG via the Brønsted acid-base reaction. The use of ammonia analyte as a test gas confirmed that the sensing performance of the optimized sensor was reversible and excellent (detection time of < 15 min, sensitive naked-eye detection at 0.25 ppm, good selectivity to common volatile organic gases, and good stability against thermal stress). Finally, the coloration intensity of the sensor was quantified as a function of the storage time of the salmon filet at 28℃ to evaluate its usefulness in monitoring of the food freshness with the measurement of the total viable count (TVC) of microorganisms in the food. The TVC value increased from 3.2 × 105 to 3.1 × 109 cfu/g in 28 h and then became stable, whereas the sensor response abruptly changed in the first 8 h and slightly increased thereafter. This result suggests that the colorimetric response could be used as an indicator for evaluating the degree of decay of salmon induced by microorganisms.

Technical Issues and Solutions for Developing IoT Applications (IoT 애플리케이션 개발의 기술적 이슈 및 솔루션)

  • Shin, Dong Ha;Han, Seung Ho;La, Hyun Jung;Kim, Soo Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.3
    • /
    • pp.99-110
    • /
    • 2015
  • Internet-of-Things(IoT) is the computing paradigm converged with different technologies, where diverse devices are connected via the wireless network, acquire environmental information from their equipped sensors, and actuated. IoT applications typically provide smart services to users by interacting with multiple devices connected to the network and are designed by integrating multiple technologies such as sensor network, communication technologies, and software engineering. Moreover, since the concept of IoT has been introduced recently, most of the researches are in the beginning step, which is too early to be practically applied. Due to these facts, developing IoT application results in unconventional technical challenges which have not been observed in typical software applications. And, it is not straightforward to apply conventional project guidelines to IoT application development projects. Hence, there can be many difficulties to successfully complete the projects. Therefore, for successful completion of the projects, we analyze technical challenges occurring in all phases of the project lifecycle, i.e. project preparation stage and development stage. And, we propose the effective solutions to overcome the issues. To verify identified issues and presented solutions, we present the result of applying the solutions to an IoT application development. Through the case study, we evaluate how reasonable the unconventional technical issues are generated and analyze effectiveness of applying the solutions to the application.

A Study on Integrated Platform for Prevention of Disease and Insect-Pest of Fruit Tree (특용과수의 병해충 및 기상재해 방지를 위한 통합관리 플랫폼 설계에 대한 연구)

  • Kim, Hong Geun;Lee, Myeong Bae;Kim, Yu Bin;Cho, Yong Yun;Park, Jang Woo;Shin, Chang Sun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.347-352
    • /
    • 2016
  • Recently, IoT technology has been applied in various field. In particular, the technology focuses on analysing large amount of data that has been gathered from the environmental sensors, to provide valuable information. This technique has been actively researched in the agro-industrial sector. Many researches are underway in the monitoring and control for growth crop environment in agro-industrial. Normally, the average weather data is provided by the manual agro-control method but the value may differ due to the different region's weather and environment that may cause problem in the disease and insect-pest prevention. In order to develop a suitable integrated system for fruit tree, all the necessary information is obtained from the Jeollanam-do province, which has the high production rate in the Korea. In this paper, we propose an integrated support platform for the growing crops, to minimize the damage caused due to the weather disaster through image analysis, forecasting models, by using the micro-climate weather information collection and CCTV. The fruit tree damage caused by the weather disaster are controlled by utilizing various IoT technology by maintaining the growth environment, which helps in the disease and insect-pest prevention and also helps farmers to improve the expected production.

Wearable Technology with Future Fabrics (웨어러블 테크놀로지와 미래 소재)

  • Park, Hye-Sook;Lee, Jae-Jung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.12 s.159
    • /
    • pp.1800-1809
    • /
    • 2006
  • The wearable technology takes the concept of clothing over its limits -integrating software, communication devices, and sensors into the garments to enable them to 'think' for the wearer. A dress is no longer just a dress, but a dress as well as a wearable computer interface. This wearable computer network transports the data power and control signals within the wearer's personal space. The purpose of this thesis is to explore the wearable technology from a commercial perspective. On this theme I made a survey and interviewed 20 men and 20 women in London to find out if many people are familiar with the concept of the wearable technology. The main results of this study include: Firstly, according to the survey, people are not familiar with the concept of the wearable technology, and further people thought negatively about the wearable computer rather than positively they worried about hish prices, inappropriate technology and side effects. Secondly, people are especially interested in items related to health and security, so in this area there are huge potential opportunities for the wearable technology, Finally, wearable technology needs to be a simplified set of interactive devices, which are in a user friendly format for marketability because convenience was one of the biggest concern for consumers. Therefore, development of the wearable computer should be promoted not only through computer engineering but also through the connection with human lift.

A Study on Utilization 3D Shape Pointcloud without GCPs using UAV images (UAV 영상을 이용한 무기준점 3D 형상 점군데이터 활용 연구)

  • Kim, Min-Chul;Yoon, Hyuk-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • Recently, many studies have examined UAVs (unmanned aerial vehicles), which can replace and supplement existing surveying sensors, systems, and images. This study focused on the use of UAV images and assessed the possibility of utilization in areas where it is difficult to obtain GCPs (ground control points), such as disasters. Therefore, 3D (dimensional) pointcloud data were generated using UAV images and the absolute/relative accuracy of the generated model data using GCPs and without GCPs was assessed. The results showed the 3D shape pointcloud generated by UAV image matching was proven if the relative accuracy was set, regardless of whether GCPs were used or not; the quantitative measurement error rate was within 1%. Even if the absolute accuracy was low, the 3D shape pointcloud that had been post processed quickly was sufficient to be utilized when it is impossible to acquire GCPs or urgent analysis is required. In particular, the results can obtain quantitative measurements and meaningful data, such as the length and area, even in cases with the ground reference point surveying and post-process.

Dimensionality Reduction Methods Analysis of Hyperspectral Imagery for Unsupervised Change Detection of Multi-sensor Images (이종 영상 간의 무감독 변화탐지를 위한 초분광 영상의 차원 축소 방법 분석)

  • PARK, Hong-Lyun;PARK, Wan-Yong;PARK, Hyun-Chun;CHOI, Seok-Keun;CHOI, Jae-Wan;IM, Hon-Ryang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.1-11
    • /
    • 2019
  • With the development of remote sensing sensor technology, it has become possible to acquire satellite images with various spectral information. In particular, since the hyperspectral image is composed of continuous and narrow spectral wavelength, it can be effectively used in various fields such as land cover classification, target detection, and environment monitoring. Change detection techniques using remote sensing data are generally performed through differences of data with same dimensions. Therefore, it has a disadvantage that it is difficult to apply to heterogeneous sensors having different dimensions. In this study, we have developed a change detection method applicable to hyperspectral image and high spat ial resolution satellite image with different dimensions, and confirmed the applicability of the change detection method between heterogeneous images. For the application of the change detection method, the dimension of hyperspectral image was reduced by using correlation analysis and principal component analysis, and the change detection algorithm used CVA. The ROC curve and the AUC were calculated using the reference data for the evaluation of change detection performance. Experimental results show that the change detection performance is higher when using the image generated by adequate dimensionality reduction than the case using the original hyperspectral image.

Study on the Projectile Velocity Measurement Using Eddy Current Probe (와전류 탐촉자를 이용한 총구 탄속 측정에 관한 연구)

  • Shin, Jungoo;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.83-86
    • /
    • 2015
  • Nowadays the weapon systems are employed air bursting munition (ABM) as smart programmable 40 mm shells which have been developed in order to hit the target with programmed munition that can be air burst after a set distance in the battlefield. In order to improve the accuracy of such a bursting time, by measuring the speed of the munition from the barrel, weapon systems calculate the exact time of flight to the target and then the time information must be inputted to the munition. In this study, we introduce a device capable of detecting a shot at K4 40 mm automatic grenade. The shot is composed of a rotating copper band to convert linear motion into rotary motion when it passes through the barrel, the steel section is exert the effect of fragment and aluminum section to give fuze information. The aluminum section was used to detect munition using eddy current method. To measure muzzle velocity by means of non-contact method, two eddy current probes separated 10 cm was employed. Time interval between two eddy current probe detection times was used as muzzle velocity. The eddy current probe was fabricated U-shape Mn-Zn ferrite core with enamelled copper wire, and 200 kHz alternating current was used to detect inductance change. Measured muzzle velocity using the developed sensor was compared to the Doppler radar system. The difference was smaller than 1%.

A Proposal of a Mobile Augmented Reality Service Model based on Street Data, and its Implementation (도로데이터 기반의 모바일 증강현실 서비스 모델 제안 및 시스템 구현)

  • Lee, Jeong Hwan;Lee, Jun;Kwon, Yong Jin
    • Spatial Information Research
    • /
    • v.23 no.5
    • /
    • pp.9-19
    • /
    • 2015
  • The popularity of smart devices and Location Based Services (LBSes) is increasing in part due to users demand for personalized information associated with their location. These services provide intuitive and realistic information by adopting Augmented Reality (AR) technology. This technology utilizes various sensors embedded in the mobile devices. However, these services have inherent problems due to the devices small screen size and the complexity of the real world environment; overlapping content on a small screen and placing icons without considering the user's possible movement. In order to solve these problems, this paper proposes a Mobile Augmented Reality Model with the application of Street Data. The model consists of two layers: "Real Space" and "Information Space". In the model, a user creates a query by scanning the nearby street with a camera in real space and searches accessible content along the street through the use of the information space. Furthermore, the results are placed on both sides of the street to solve the issue of Overlapping. Also, the proposed model is implemented for region "Aenigol", and the efficiency and usefulness of the model are verified.