• Title/Summary/Keyword: smart sensor

Search Result 2,166, Processing Time 0.029 seconds

Implementation of the Baby Care System Using Smart Sensor (스마트 센서를 이용한 Baby Care 시스템 구현)

  • Chung, Jae-Pil;Lee, Tae-Bong
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.6
    • /
    • pp.648-652
    • /
    • 2014
  • The core of existing IT industry has been multimedia contents based on internet network. But nowadays, ubiquitous technology which combines sensors and network technology is emerging and is called USN (ubiquitous sensor network). Health care industry is one of suitable areas for USN application. In this paper, sensor network for baby care is proposed. The proposed baby care system consists of bluetooth network to transfer information which comes from various sensors like falling detecting, crying and fever detecting sensor to keep infant's status safe from external-potential threats. The effectiveness of the implemented system is showed through demonstration.

Power Efficient Classification Method for Sensor Nodes in BSN Based ECG Monitoring System

  • Zeng, Min;Lee, Jeong-A
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1322-1329
    • /
    • 2010
  • As body sensor network (BSN) research becomes mature, the need for managing power consumption of sensor nodes has become evident since most of the applications are designed for continuous monitoring. Real time Electrocardiograph (ECG) analysis on sensor nodes is proposed as an optimal choice for saving power consumption by reducing data transmission overhead. Smart sensor nodes with the ability to categorize lately detected ECG cycles communicate with base station only when ECG cycles are classified as abnormal. In this paper, ECG classification algorithms are described, which categorize detected ECG cycles as normal or abnormal, or even more specific cardiac diseases. Our Euclidean distance (ED) based classification method is validated to be most power efficient and very accurate in determining normal or abnormal ECG cycles. A close comparison of power efficiency and classification accuracy between our ED classification algorithm and generalized linear model (GLM) based classification algorithm is provided. Through experiments we show that, CPU cycle power consumption of ED based classification algorithm can be reduced by 31.21% and overall power consumption can be reduced by 13.63% at most when compared with GLM based method. The accuracy of detecting NSR, APC, PVC, SVT, VT, and VF using GLM based method range from 55% to 99% meanwhile, we show that the accuracy of detecting normal and abnormal ECG cycles using our ED based method is higher than 86%.

SOI CMOS-Based Smart Gas Sensor System for Ubiquitous Sensor Networks

  • Maeng, Sung-Lyul;Guha, Prasanta;Udrea, Florin;Ali, Syed Z.;Santra, Sumita;Gardner, Julian;Park, Jong-Hyurk;Kim, Sang-Hyeob;Moon, Seung-Eon;Park, Kang-Ho;Kim, Jong-Dae;Choi, Young-Jin;Milne, William I.
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.516-525
    • /
    • 2008
  • This paper proposes a compact, energy-efficient, and smart gas sensor platform technology for ubiquitous sensor network (USN) applications. The compact design of the platform is realized by employing silicon-on-insulator (SOI) technology. The sensing element is fully integrated with SOI CMOS circuits for signal processing and communication. Also, the micro-hotplate operates at high temperatures with extremely low power consumption, which is important for USN applications. ZnO nanowires are synthesized onto the micro-hotplate by a simple hydrothermal process and are patterned by a lift-off to form the gas sensor. The sensor was operated at $200^{\circ}C$ and showed a good response to 100 ppb $NO_2$ gas.

  • PDF

An Energy Efficient Intelligent Method for Sensor Node Selection to Improve the Data Reliability in Internet of Things Networks

  • Remesh Babu, KR;Preetha, KG;Saritha, S;Rinil, KR
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3151-3168
    • /
    • 2021
  • Internet of Things (IoT) connects several objects with embedded sensors and they are capable of exchanging information between devices to create a smart environment. IoT smart devices have limited resources, such as batteries, computing power, and bandwidth, but comprehensive sensing causes severe energy restrictions, lowering data quality. The main objective of the proposal is to build a hybrid protocol which provides high data quality and reduced energy consumption in IoT sensor network. The hybrid protocol gives a flexible and complete solution for sensor selection problem. It selects a subset of active sensor nodes in the network which will increase the data quality and optimize the energy consumption. Since the unused sensor nodes switch off during the sensing phase, the energy consumption is greatly reduced. The hybrid protocol uses Dijkstra's algorithm for determining the shortest path for sensing data and Ant colony inspired variable path selection algorithm for selecting active nodes in the network. The missing data due to inactive sensor nodes is reconstructed using enhanced belief propagation algorithm. The proposed hybrid method is evaluated using real sensor data and the demonstrated results show significant improvement in energy consumption, data utility and data reconstruction rate compared to other existing methods.

An Effective Method of Testing Application Software of Smart Sensors (스마트 센서 응용 소프트웨어를 테스팅하기 위한 효율적인 방법)

  • Jo, Jang-Wu;Joeng, Hwan-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.8
    • /
    • pp.105-111
    • /
    • 2013
  • This paper presents a virtual sensor system that is an effective method to test application software of smart sensors. The common way of testing sensor application is to build a test board, connect sensors to the board, and test sensor applications on the board with sensor's measurements as inputs. The problem of testing sensor application software with sensor's measurements as inputs is the restriction of test data. In other words, software testers cannot manipulate test data, because test data is generated by sensors. To solve this problem a virtual sensor system is presented in this paper. The virtual sensor system enables software testers to manipulate measurements of sensors. In the virtual sensor system, generation of virtual sensors comprises three stages - sensor selection, sensor characterization, and determination of output patterns. Sensor's measurements that can be manipulated through the virtual sensor system make the process of testing efficient. To show the usefulness of our virtual sensor system, it is applied to sensor applications in Android platform and the result of experiments is shown.

An Efficient Key management for Wireless Sensor Network (무선센서 네트워크를 위한 효율적인 키 관리 연구)

  • Park, Sung-Kon
    • Journal of Digital Contents Society
    • /
    • v.13 no.1
    • /
    • pp.129-139
    • /
    • 2012
  • Recently, the smart sensor technologies are rapidly developing in accordance with the technology of implementation in small-size, low-cost, and low power consumption. With these sensor technologies, especially with MEMS and NEMS, the researches on the WSN are actively performing. For the WSN, a network security function is essential even it requires high physical resource level. But the WSN with the smart sensor technologies could not be provided with enough resources for the function because of limited size, computing-power, low-power, and etc. In this paper, we introduce security and key-management protocols of WSN.

A Study on Design of Flexible Gripper for Unmanned FA (무인 FA를 위한 플렉시블 그리퍼 설계에 관한 연구)

  • Kim, Hyun-Gun;Kim, Gi-Bok;Kim, Tae-Kwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.167-172
    • /
    • 2015
  • In this paper, we propose a new approach to design and control a smart gripper of robot system. A control method for flexible grasping a object in partially unknown environment was proposed, where a proximate sensor detecting the distance between the fingertip and object was used. Based on the proximate sensor signal the finger motion controller could plan the grasping process divided in three phases. The first step is scanning process which two first joints were moved to mid-position of the detected range by a state-variable feedback position controller, after the scanning was finished. The contact force of fingertip was then controlled using the detection sensor of the servo controller for finger joint control. The proposed grasping planning was tested on rectangular bar.

Innovative cable force monitoring of stay cables using piezoelectric dynamic strain responses

  • Nguyen, Khac-Duy;Huynh, Thanh-Canh;Lee, Ji-Yong;Shin, Sung Woo;Kim, Jeong-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.830-834
    • /
    • 2013
  • This study presents a method to monitor cable force of a long-span cable-stayed bridge using a smart piezoelectric sensor system. The following approaches are implemented in order to achieve the objective. Firstly, the method to utilize piezoelectric materials for the health monitoring of stay cables is presented. For strain measurement of a stay cable, a PZT-embedded smart skin is designed to overcome the difficulties of bonding PZT sensors directly on stay cables. Secondly, a piezoelectric strain monitoring system for stay cables is designed. For the operation of the sensor board, the Imote2 sensor platform is used to provide the computation, wireless communication and power supply units. The feasibility of the proposed monitoring system is then evaluated on a full-scale cable of a cable-stayed bridge.

  • PDF

Obstacle Awareness and Collision Avoidance Radar Sensor System for Smart UAV

  • Kwag, Young K.;Hwang, Kwang Y.;Kang, Jung W.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.97-109
    • /
    • 2005
  • In this paper, the critical requirement for obstacle awareness and avoidance is assessed with the compliance of the equivalent level of safety regulation, and then the collision avoidance sensor system is presented with the key design parameters for the requirement of the smart unmanned aerial vehicle in low-altitude flight. Based on the assessment of various sensors, small-sized radar sensor is selected for the suitable candidate due to the real-time range and range-rate acquisition capability of the stationary and moving aircraft even under all-weather environments. Through the performance analysis for the system requirement, the conceptual design result of radar sensor model is proposed with the range detection probability and collision avoidance mode is established based on the time-to-collision, which is analyzed by collision scenario.

Symptoms-Based Power-Efficient Communication Scheme in WBSN

  • Sasi, Juniven Isin D.;Yang, Hyunho
    • Smart Media Journal
    • /
    • v.3 no.1
    • /
    • pp.28-32
    • /
    • 2014
  • It is practical nowadays to automate data recording in order to prevent loss and tampering of records. There are existing technologies that satisfy this needs and one of them is wireless sensor networks (WSN). Wireless body sensor networks (WBSN) are wireless networks and information-processing systems which are deployed to monitor medical condition of patients. In terms of performance, WBSNs are restricted by energy, and communication between nodes. In this paper, we focused in improving the performance of communication to achieve less energy consumption and to save power. The main idea of this paper is to prioritize nodes that exhibit a sudden change of vital signs that could put the patient at risk. Cluster head is the main focus of this study in order to be effective; its main role is to check the sent data of the patient that exceeds threshold then transfer to the sink node. The proposed scheme implemented added a time-based protocol to sleep/wakeup mechanism for the sensor nodes. We seek to achieve a low energy consumption and significant throughput in this study.