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This paper proposes a compact, energy-efficient, and 
smart gas sensor platform technology for ubiquitous 
sensor network (USN) applications. The compact design of 
the platform is realized by employing silicon-on-insulator 
(SOI) technology. The sensing element is fully integrated 
with SOI CMOS circuits for signal processing and 
communication. Also, the micro-hotplate operates at high 
temperatures with extremely low power consumption, 
which is important for USN applications. ZnO nanowires 
are synthesized onto the micro-hotplate by a simple 
hydrothermal process and are patterned by a lift-off to 
form the gas sensor. The sensor was operated at 200°C 
and showed a good response to 100 ppb NO2 gas. 
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I. Introduction 

Ubiquitous sensor network (USN) technology has attracted a 
great deal of attention as a means to collect environmental 
information to realize a variety of functions through a large 
number of compact wireless sensor nodes that are widely 
distributed [1]. Indeed, it is a researchers’ dream to build USNs 
for agriculture, ecology protection, indoor air conditioning, 
pollution monitoring, disaster management, and so on by 
developing a compact sensing platform which can 
simultaneously monitor light, temperature, humidity, 
barometric pressure, vibration, and bio-chemicals. In order to 
satisfy this compact multifunctional sensor design rule, it is 
necessary to integrate optical, mechanical, and bio-chemical 
sensors, as well as actuators and other functional micro-electro-
mechanical systems (MEMS) with CMOS circuits for signal 
processing and communication.   

As the compact sensor nodes must operate for long periods 
of time using mini-batteries or energy harvesting tools, they 
must also be designed to be extremely energy efficient [2]. 
Another key issue in sensor platform design is the sensitivity of 
the sensors. Monitoring of the atmosphere, for example, 
requires chemical sensors to detect target gases. Commercially 
available environmental gas detection systems can be classified 
into 2 types: large systems (~cm3) with high sensitivity and 
small systems (~mm3) with low sensitivity. As chemical gas 
sensing is expected to become a basic core function of various 
USN applications, the development of highly sensitive 
compact gas sensing devices is crucial.  

One promising way to design a highly sensitive compact gas 
sensing device is to use solid-state semiconductors as sensing 
elements instead of presently available low sensitivity 
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electrochemical cells. The layout of this sensor basically 
comprises a gas sensing layer on a membrane embedded with 
interdigitating electrodes and a heater. The reason for 
incorporating heaters into sensors is that solid-state 
semiconductors generally react with gases at high temperatures 
(300 to 600oC). This is the significant drawback of commercial 
solid-state sensors, as the heating elements consume too much 
power (200 mW to 800 mW) [3], [4]. There have been 
previous reports of resistive heaters operating with low power 
consumption [5]-[10]. However, the process is not fully CMOS 
compatible, so it has the disadvantage of a higher fabrication 
cost, and it does not offer the possibility of circuit integration. 
CMOS compatible sensors were successfully fabricated by 
Suehle and others [11]. These sensors are based on oxide Al 
micro-hotplates and poly-silicon heaters. The use of Al, 
however, hinders high temperature operation due to electro-
migration, and it also causes power loss. Resistive sensors 
based on a poly-silicon also tend to suffer from a significant 
shortfall. The high doping levels required to increase the 
resistivity of the heater put high stress on the membrane, and 
they possess poor long term thermal stability at temperatures 
above 300ºC. Udrea and others suggested a possible solution to 
this problem by employing silicon-on-insulator (SOI) 
technology [12]. 

By adopting the design of a micro-hotplate using SOI 
technology, gas sensors can operate at much higher 
temperatures (up to 600oC) than would normally be expected 
for CMOS materials. Moreover, the sensing elements are fully 
integrated with CMOS circuits and other sophisticated 
structures vulnerable to high temperatures. This also reduces 
the cost of fabrication, producing high quality repeatable heater 
structures.  

SOI CMOS technology offers crucial advantages over other 
CMOS technologies. It provides superior characteristics and 
has higher temperature capability. Moreover, it offers excellent 
electrical and thermal isolation between different blocks and is 
thus able to eliminate electrical or thermal cross-talk between 
the sensing element on one side and the drive and transducer 
on the other. Therefore, SOI CMOS technology can become a 
common platform technology for smart mechanical and 
chemical sensors, which makes it ideal for USN applications 
[13]. 

In this paper, we propose novel gas sensor platform 
technology showing extremely low power consumption and 
fast and high sensing response that can be used in conjunction 
with USN for environmental monitoring.       

II. Preliminary Sensor Platform Design Layout  

The preliminary sensor platform design layout is shown in  

 

Fig. 1. Sensor platform design layout. 
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Fig. 1. The micro-hotplate is integrated with the drive circuitry 
and analog readout circuitry. The interface electronic circuits 
mainly comprise the constant current mirror (to drive the 
micro-heater and temperature sensor), temperature control 
circuit, analog multiplexer and decoder circuit, sample and 
hold circuit, 555 timer clock for the A/D converter and 
successive approximation register (SAR) A/D converter. They 
are integrated with the micro-hotplates to complete the smart 
sensor system. 

III. Integrated Circuit Design and Simulation - Sensor 
Interface and Signal Processing Electronics 

The main building blocks of the associated electronic circuits 
for integration with gas sensors are shown in Fig. 2. The micro-
controller is connected from the outside to control and monitor 
the chip functionality. The details of the design are discussed in 
this section. 
 

 

Fig. 2. Schematic diagram of complete sensor system. 
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1. Driving Circuit 

The main driving circuit is a constant current source. It is 
used to drive the micro-heaters and integrated circuit (IC) 
temperature sensors. A constant current source modifies the 
voltage across its load to produce a constant current through it. 

( )
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ref L R

I
I

=  

This equation indicates that for the simple MOSFET current 
mirror, the ratio of Iout1 to Iref may be scaled to any desired value 
by scaling the aspect ratio (W/L) of the devices. The usual 
method to realize Iref is to introduce a constant resistance 
between the drain of MR and the ground. 

In our chip, a cascade constant current source has been 
designed for better performance (see Fig. 4) because it has 
greater internal resistance than the simple current mirror circuit  

 

Fig. 3. Current mirror circuit. 
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Fig. 4. Cascade current mirror circuit. 
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Fig. 5. Current at various bias voltages. 

0

1

2

3

4

5

6

0 500 1000 1500 2000

Heater resistance (Ω) 

H
ea

te
r c

ur
re

nt
 (m

A
) 

Vb=0.0 V

Vb=1.3 V

Vb=1.6 V 

Vb=1.8 V 

Vb=2.0 V 

Vb=2.1 V 

Vb=2.3 V

Vb=2.5 V

 
 

 

Fig. 6. Temperature control circuit. 
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(see Fig. 3) and, therefore, can deliver a constant current for 
higher load resistances. Instead of using a constant resistance at 
the reference arm, a MOSFET can be used to vary the current 
through the load. This allows the load current to be varied by 
applying different DC bias voltages to the gate (as shown in  
Fig. 5) or pulsing the gate signal to reduce the power consumption. 

2. Temperature Control Unit 

The temperature control unit is designed to control the 
temperature of the heater. Temperature control is important 
because gas sensing materials are sensitive to different gases at 
different temperatures. Therefore the temperature has to be 
controlled in order to properly identify gases. 

The temperature control unit (see Fig. 6) comprises a 
decoder, a comparator, and a voltage divider circuit. The 
decoder is used to select one of the resistances of the voltage 
divider circuit by switching on a MOSFET. The comparator  
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Fig. 7. Instrumentation amplifier for measuring temperature. 
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Fig. 8. IA output at different offset voltage. 
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compares the voltages across the voltage divider and the 
temperature sensor. Thus, the comparator output controls the 
duration of the current through the heater. The heater 
temperature can be controlled depending on which resistance 
branch is selected by the decoder. 

3. Interfacing Circuit for the Temperature Sensor 

An instrumentation amplifier (IA) was designed to measure 
the temperature of the membrane. One temperature sensor is 
located on the membrane and a reference sensor is located off 
the membrane; hence, the instrumentation amplifier amplifies 
the difference between the signals from the two temperature 
sensors (see Fig. 7).  

The output voltage of the IA is linearly proportional to the 
voltage difference at the input; hence, it is proportional to 
temperature of the membrane. An offset voltage source is fed 
into the second stage of the IA to remove offset of the 
characteristics (see Fig. 8). The resistance at the input stage of 
IA can be accessed from outside to control the gain. 

The main building block of the IA is the operational  

 

Fig. 9. Operational amplifier. 
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Fig. 10. Operational amplifier characteristics. 
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amplifier (OPAMP). The OPAMP was designed with a p-
channel input differential MOSFET as shown in Fig. 9. This is a 
single supply (0 to 5 V) two stage OPAMP with an output buffer 
stage so that it can drive a low resistance load (about 4 kΩ). The 
OPAMP characteristics are shown in Fig. 10. It has a gain of  
60 dB, bandwidth of 4 MHz and phase margin of 100 degrees. 

4. Clock  

A 555 timer clock has been designed for the clock signal. 
There is a provision to connect a capacitor from outside if we 
need to change the frequency of the clock. 

5. A/D Converter  

An 8-bit SAR has been designed to convert the analog 
signals into digital bits. The main building blocks of the SAR 
A/D converter are a sample and hold circuit (S/H), comparator,  
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Fig. 11. SAR A/D converter. 
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Fig. 12. SAR A/D converter characteristics. 
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SAR block, and D/A charge scaling converter (see Fig. 11). 
Figure 12 shows the SAR A/D converter characteristics. The 
resolution of the A/D converter is approximately 3.3/256 at 
12.8 mV. 

All the circuits described here have been successfully 
designed and simulated. In our forthcoming work, we are 
planning to integrate the A/D converter with the micro-hotplate. 
The A/D converter signal will then be processed by a 
microcontroller which will be connected outside the chip.  

IV. Micro-Hotplate Design and Fabrication 

Circular micro-hotplates with a heater radius of 75 μm and a 
membrane radius of 280 μm have been designed. The micro-
hotplate schematic cross-section is shown in Fig. 13. The 
hotplate has been fabricated at the XFAB (Germany) SOI 
CMOS fabrication facility using a tungsten metallization 
process and back etched to the buried oxide at Silex (Sweden) 
by a low frequency deep reactive ion etching (DRIE) technique.  
All the layers used for the micro-hotplate, as well as the 
tungsten sensing electrodes, are formed during the CMOS  

 

Fig. 13. Schematic diagram of micro-hotplate with integrated SOI
CMOS electronics. 
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Fig. 14. Fabricated micro-hotplate integrated with drive circuit 
and analog readout circuit. 
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Fig. 15. Micro-heater power vs. temperature plot at various wafer 
positions. 
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sequence, with no additional post-processing steps required.  
A thermal sensor in the form of an SOI thermo-diode or a 
silicon resistive temperature detector (RTD) was integrated  
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Fig. 16. Transient temperature response of micro-heater. 
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directly below the heater, to accurately monitor the temperature 
during operation. A photograph of the manufactured smart 
sensor platform is shown in Fig. 14. 

The heaters show excellent reproducibility and very low DC 
power consumption (34 mW at 600oC) as shown in Fig. 15. 
Transient measurement was made by applying a 50 ms square 
voltage pulse to the heater. Figure 16 shows the rise and fall 
times needed for various target temperatures ranging from 100 
to 600oC. The heater has a 10 to 90% rise time of about 10 ms 
and a fall time of about 20 ms. 

V. Sensing Material Integration and Sensor 
Characterization  

1. Overview of Sensing Material Integration with Micro-
Hotplate 

Commercially available semiconductor sensors which are 
composed of polycrystalline thick films do not satisfy the 
sensitivity requirement for USN applications because of the 
limited surface-to-volume ratio of the materials. The key factor 
governing the gas sensitivity of the semiconductor sensors is 
the amount of reactive gases (mainly oxygen) adsorbed onto 
the surface of the material. In the case of conventional thick 
film sensors, the gas species are adsorbed only near the grain 
boundaries or porous surface. Recently, nanostructures, such as 
carbon nanotubes (CNTs), SnO2 nanowires or nanoslabs, and 
ZnO nanorods have attracted much attention from sensor 
researchers due to their extremely high surface-to-volume ratio. 
In particular, sensors based on a single nanostructure have been 
reported to show excellent sensitivity [14]-[16]. However, they 
are not convenient for mass production. As mass production 
schemes combining SOI CMOS microtechnology with 
nanotechnology, on-chip local growth of CNTs [17], [18] and 
ink-jetting of polymer/CNT composites [19] have been 
proposed. In the case of SnO2, thermal evaporation at 
atmospheric pressure has been suggested as a potentially 
promising mass production scheme for SOI CMOS 

compatible technology [20]. Thick-film sensors based on ZnO 
nanowires were also reported to be fabricated by a spin coating 
method on a silicon-based membrane embedded with Pt 
interdigitating electrodes and a heater [21]. However, it is not 
easy to fabricate ZnO nanorods by a simple evaporation 
method. Furthermore, the thick layer of the nanowires 
considerably decreases the surface-to-volume ratio, which 
leads to deterioration of sensitivity. For mass production 
preparation of ZnO nanostructures, Wang and others 
hydrothermally synthesized ZnO nanorods and then mixed 
them with a polyvinyl alcohol (PVA) solution to form a paste 
[22]. An Al2O3 tube sensor was then coated with this paste.  

Even though the hydrothermal process is suitable for mass 
production, the lack of consistency in the sensor properties has 
been noted as the major problem associated with this technique. 
Furthermore, the integration of this technique with the SOI 
CMOS is impossible due to the process incompatibility [23].     

In this section, we introduce a novel hydrothermal method to 
laterally grow ZnO nanorods directly onto the micro-heater, 
which is ideal for combining SOI CMOS microtechnology 
with nanotechnology. 

2. Hydrothermal Synthesis of ZnO Nanowires 

To deposit ZnO nanowires directly onto the micro-hotplate, 
we used a hydrothermal method. It is reported that arrayed 
ZnO nanorods were grown vertically by hydrothermal process 
[24]. However, in our sensor application, the ZnO nanorods 
should bridge electrodes by growing laterally. In this paper, we 
report the hydrothermal lateral growth of ZnO nanorods. First, 
we made a solution by dissolving zinc nitrate hexahydrate 
(HMTA, Zn(NO3)2·6H2O) and methenamine (HMTA, 
C6H12N4) in DI water (MilliQ, 18.2 MΩcm ) to a concentration 
of 0.01 M. Then, a sensor platform on which a photo resist 
(PR) pattern had been formed was placed in the solution, 
which was maintained at 95oC for 2 hours to deposit ZnO 
nanorods.  The as-deposited nanowires were further defined 
on the micro-hotplate using lift-off as shown in Fig. 17(a). The 
lateral growth of ZnO nanorods can be confirmed by the SEM 
image of the nanostructured ZnO sensing materals (Fig. 17(b)). 

3. Sensor Performance 

To test our ZnO nanowire-based sensors, we investigated 
their responses to NO2 gas, which was balanced with dry N2 
carrier gas fixed at 1000 sccm. During the test, sensing and 
refreshing were performed at 18 and 25 mW, respectively.  
The measured gas sensing property is shown in Fig. 18. 

The sensitivity was found to be as high as 40% per 100 ppb 
NO2, and the detection limit can be down to ppb level. The gas 
sensing and refreshing processes were facilitated by operation  
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Fig. 17. (a) Optical image of ZnO nanorod sensor formed on an
interdigitated electrode fabricated on a micro-heater and
(b) SEM image of the deposited ZnO nanorods. 
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Fig. 18. Gas sensing property of ZnO nanowire-based sensor.
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of the micro-hotplate, varying the temperature of the sensing 
element, which is the merit of our microhotplate-based sensor 
platform. 

VI. Conclusion 

In this paper, we propose a highly compact, energy-efficient 
gas sensor system for USN application. By employing SOI 

technology, the sensor part is fully integrated with CMOS 
circuits and the power consumption is dramatically reduced.  
We believe that this technology requires the lowest power 
consumption of any technology in the field to date and is, 
therefore, of enormous commercial impact. The hydrothermal 
growth of ZnO nanorods directly on the sensing electrodes is 
described for the first time and demonstrates the ability to 
realize highly sensitive NO2 gas sensors from nanomaterials.   
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