• Title/Summary/Keyword: smart node

Search Result 349, Processing Time 0.025 seconds

Static analysis of rubber components with piezoelectric patches using nonlinear finite element

  • Manna, M.C.;Sheikh, A.H.;Bhattacharyya, R.
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.23-42
    • /
    • 2009
  • In order to reduce vibration or to control shape of structures made of metal or composites, piezoelectric materials have been extensively used since their discovery in 1880's. A recent trend is also seen to apply piezoelectric materials to flexible structures made of rubber-like materials. In this paper a non-linear finite element model using updated Lagrangian (UL) approach has been developed for static analysis of rubber-elastic material with surface-bonded piezoelectric patches. A compressible stain energy function has been used for modeling the rubber as hyperelastic material. For formulation of the nonlinear finite element model a twenty-node brick element is used. Four degrees of freedom u, v and w and electrical potential ${\varphi}$ per node are considered as the field variables. PVDF (polyvinylidene fluoride) patches are applied as sensors/actuators or sensors and actuators. The present model has been applied to bimorph PVDF cantilever beam to validate the formulation. It is then applied to study the smart rubber components under different boundary and loading conditions. The results predicted by the present formulation are compared with the analytical solutions as well as the available published results. Some results are given as new ones as no published solutions available in the literatures to the best of the authors' knowledge.

Sub 1GHz Wireless LAN

  • Seok, Yong-Ho
    • Information and Communications Magazine
    • /
    • v.30 no.6
    • /
    • pp.20-25
    • /
    • 2013
  • 본고에서는 1GHz 이하 주파수에서 동작하는 Wireless LAN(WLAN) 표준으로, IEEE 802.11ah PHY/MAC 표준 규격에 대해서 알아 본다. IEEE 802.11ah 표준은, Smart Grid, M2M, IoT 와 같이 실내, 실외에서 많은 수의 단말들을 최소한의 전력소모로 데이터 통신을 하기 위한 목적으로 개발되었다. WLAN의 서비스 범위가 1Km 이상으로 늘어나게 되면, 그 동안 WLAN 에서 심각하게 다루지 않았던 Hidden Node 문제가 단말의 전력 소모, throughput performance 을 결정하는 중요한 요소로 등장하게 된다. 특별히 IEEE 802.11ah 에서는, 많은 수의 단말들간에 Hidden Node 을 고려한 Restricted Access Window 라는 새로운 channel access 기법이 제안되었고, 이에 본 고에서는 IEEE 802.11ah 에 새롭게 지원되는 MAC 기능들에 대해 중점적으로 살펴 보도록 한다.

Adaptive Data Aggregation and Compression Scheme for Wireless Sensor Networks with Energy-Harvesting Nodes

  • Jeong, Semi;Kim, Hyeok;Noh, Dong Kun;Yoon, Ikjune
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.115-122
    • /
    • 2017
  • In this paper, we propose an adaptive data aggregation and compression scheme for wireless sensor networks with energy-harvesting nodes, which increases the amount of data arrived at the sink node by efficient use of the harvested energy. In energy-harvesting wireless sensor networks, sensor nodes can have more than necessary energy because they harvest energy from environments continuously. In the proposed scheme, when a node judges that there is surplus energy by estimating its residual energy, the node compresses and transmits the aggregated data so far. Conversely, if the residual energy is estimated to be depleted, the node turns off its transceiver and collects only its own sensory data to reduce its energy consumption. As a result, this scheme increases the amount of data collected at the sink node by preventing the blackout of relay nodes and facilitating data transmission. Through simulation, we show that the proposed scheme suppresses the occurrence of blackout nodes and collect the largest amount of data at the sink node compared to previous schemes.

WiSeMote: a novel high fidelity wireless sensor network for structural health monitoring

  • Hoover, Davis P.;Bilbao, Argenis;Rice, Jennifer A.
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.271-298
    • /
    • 2012
  • Researchers have made significant progress in recent years towards realizing effective structural health monitoring (SHM) utilizing wireless smart sensor networks (WSSNs). These efforts have focused on improving the performance and robustness of such networks to achieve high quality data acquisition and distributed, in-network processing. One of the primary challenges still facing the use of smart sensors for long-term monitoring deployments is their limited power resources. Periodically accessing the sensor nodes to change batteries is not feasible or economical in many deployment cases. While energy harvesting techniques show promise for prolonging unattended network life, low power design and operation are still critically important. This research presents the WiSeMote: a new, fully integrated ultra-low power wireless smart sensor node and a flexible base station, both designed for long-term SHM deployments. The power consumption of the sensor nodes and base station has been minimized through careful hardware selection and the implementation of power-aware network software, without sacrificing flexibility and functionality.

Finite Element Modeling for Free Vibration Control of Beam Structures using Piezoelectric Sensors and Actuators (압전감지기와 압전작동기를 이용한 보구조물의 자유진동제어에 대한 유한요소 모형화)

  • 송명관;한인선;김선훈;최창근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.269-278
    • /
    • 2003
  • In this study, the method of the finite element modeling for free vibration control of beam-type smart structures with bonded plate-type piezoelectric sensors and actuators is proposed. Constitutive equations for the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered. By using the variational principle, the equations of motion for the smart beam finite element are derived, The proposed 2-node beam finite element is an isoparametric element based on Timoshenko beam theory. Therefore, by analyzing beam-type smart structures with smart beam finite elements, it is possible to simulate the control of the structural behavior by applying voltages to piezoelectric actuators and monitoring of the structural behavior by sensing voltages of piezoelectric sensors. By using the smart beam finite element and constant-gain feed back control scheme, the formulation of the free vibration control for the beam structures with bonded plate-type piezoelectric sensors and actuators is proposed.

  • PDF

Finite Element Modeling of Piezoelectric Sensors and Actuators based on Timoshenko Beam Theory

  • 최창근;송명관
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.3-10
    • /
    • 2000
  • In this study, a new smart beam finite element is proposed for the finite element modeling of the beam-type smart structure with bonded plate-type piezoelectric sensors and actuators. Constitutive equations far the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered. By using the variational principle, the equations of motion for the smart beam finite element are derived. The presented 2-node beam finite element is isoparametric element based on Timoshenko beam theory. The validity of the proposed beam element is shown through comparing the analysis results of the verification examples with those of other previous researches. Therefore, by analyzing smart structures with smart beam finite elements, it is possible to simulate the control of the structural behavior by piezoelectric actuators with applied voltages and the monitoring of the structure behavior by piezoelectric sensors with sensed voltages.

  • PDF

Adaptable PANID Generation Scheme for Resolving Address Conflict Based on Hash Mechanism in IoT Environment (IoT 환경을 위한 Hash 기반 동적 Zigbee PANID 생성 및 충돌 회피 방안)

  • Lee, Jaeho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2392-2400
    • /
    • 2015
  • Zigbee, which was a representative standard technology for dealing low energy and mesh networks in large deployment area such as smart home, smart building, and massive sensor networks, has been developed and deployed for increasing communication area by using Ad hoc method. It has been originally developed based on IEEE 802.15.4 standard so every node needs 48bit unique address defined by IEEE. However, it is absolutely inefficient to assign an unique address to every communication node where it would be deployed through large-scale network area, e.g., smart lighting and massive sensor networks, because there could be variously multiple companies to deploy network infrastructure and they could have different policy to assign node ID. To prevent the problem, this paper proposes a method of dynamic PANID assignment in overall Personal Coordinators, and also proposes a method for addressing PANID conflict problem which could be derived from dynamic PANID assignment.

A Smart Caching Scheme for Wireless Home Networking Services (무선 홈 네트워킹 서비스를 위한 스마트 캐싱 기법)

  • Lee, Chong-Deuk
    • Journal of Digital Convergence
    • /
    • v.17 no.9
    • /
    • pp.153-161
    • /
    • 2019
  • Discrimination of media object segments in wireless home proxies has a significant impact on caching delay, and caching delay degrades the performance of the proxy. In this paper, we propose a Single Fetching Smart Caching (SFSC) strategy and a Multi-Fetching Smart Caching (MFSC) strategy to improve the proxy performance of the home network and improve the caching performance for media object segments. The SFSC strategy is a technique that performs caching by sequential fetching of object segments requested by the home node one at a time, which guarantees a faster cache hit rate, and the MFSC strategy is a technique that caches the media object segments by blocking object segments requested by the home node one at a time, which improves the throughput of cache. Simulation results show that the cache hit rate and the caching delay are more efficient than the MFSC technique, and the throughput of the object segment is more efficient than that of the SFSC technique.

A Design on The Zone Master Platform based on IIoT communication for Smart Factory Digital Twin (스마트 팩토리 디지털 트윈(Digital Twin)을 위한 IIoT 통신 기반 ZMP(Zone Master Platform) 설계)

  • Park, Seon-Hui;Bae, Jong-Hwan
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.81-87
    • /
    • 2020
  • This paper creates a standard node for acquiring sensor data from various industrial sensors (IoT/non-IoT) for the establishment of Smart Factory Digital Twin, and provides inter-compatible data by linking zones by group/process to secure data stability and to ensure the digital twin (Digital Twin) of Smart Factory. The process of the Zone Master platform contains interface specifications to define sensor objects and how sensor interactions between independent systems are performed and carries out individual policies for unique data exchange rules. The interface for execution control of the Zone Master Platform processor provides system management, declaration management for public-subscribe, object management for registering and communicating status information of sensor objects, ownership management for property ownership sharing, time management for data synchronization, and data distribution management for Route information on data exchange.

Investigation of smart multifunctional optical sensor platform and its application in optical sensor networks

  • Pang, C.;Yu, M.;Gupta, A.K.;Bryden, K.M.
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.23-39
    • /
    • 2013
  • In this article, a smart multifunctional optical system-on-a-chip (SOC) sensor platform is presented and its application for fiber Bragg grating (FBG) sensor interrogation in optical sensor networks is investigated. The smart SOC sensor platform consists of a superluminescent diode as a broadband source, a tunable microelectromechanical system (MEMS) based Fabry-P$\acute{e}$rot filter, photodetectors, and an integrated microcontroller for data acquisition, processing, and communication. Integrated with a wireless sensor network (WSN) module in a compact package, a smart optical sensor node is developed. The smart multifunctional sensor platform has the capability of interrogating different types of optical fiber sensors, including Fabry-P$\acute{e}$rot sensors and Bragg grating sensors. As a case study, the smart optical sensor platform is demonstrated to interrogate multiplexed FBG strain sensors. A time domain signal processing method is used to obtain the Bragg wavelength shift of two FBG strain sensors through sweeping the MEMS tunable Fabry-P$\acute{e}$rot filter. A tuning range of 46 nm and a tuning speed of 10 Hz are achieved. The smart optical sensor platform will open doors to many applications that require high performance optical WSNs.