• Title/Summary/Keyword: smart mining

Search Result 261, Processing Time 0.024 seconds

Applicability of Pocket-Charge Blasting for Large-Scale Marine Reclamation Projects (대규모 해양매립 공사를 위한 포켓차지 발파의 적용성 검토 연구)

  • Ko, Young-Hun;Jin, Yeon-Ho;Lee, Dong-Hee;Kim, Min-Seong;Kim, Gunwoong;Kim, Jeong-Heum;Kim, Nam-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.5
    • /
    • pp.21-37
    • /
    • 2024
  • Maximizing the efficiency of blasting operations is crucial for reducing project costs, shortening timelines, and minimizing environmental impacts-key factors for the success of large-scale marine reclamation projects. This study explores the application of pocket-charging methods, developed from mining principles, to enhance rock fragmentation efficiency in large-scale blasts. The aim is to optimize the material production process for marine reclamation construction. The pocket-charging technique efficiently disperses blasting energy, increasing the extent of rock fragmentation and thereby improving overall blasting performance. Even with minimal explosive quantities, optimal results and cost-efficient, expedited construction can be achieved. This research validates the effectiveness of pocket-charge blasting through blast simulation programs and outlines suitable blasting designs and strategies.

A Study on the Perception of Fashion Platforms and Fashion Smart Factories using Big Data Analysis (빅데이터 분석을 이용한 패션 플랫폼과 패션 스마트 팩토리에 대한 인식 연구)

  • Song, Eun-young
    • Fashion & Textile Research Journal
    • /
    • v.23 no.6
    • /
    • pp.799-809
    • /
    • 2021
  • This study aimed to grasp the perceptions and trends in fashion platforms and fashion smart factories using big data analysis. As a research method, big data analysis, fashion platform, and smart factory were identified through literature and prior studies, and text mining analysis and network analysis were performed after collecting text from the web environment between April 2019 and April 2021. After data purification with Textom, the words of fashion platform (1,0591 pieces) and fashion smart factory (9750 pieces) were used for analysis. Key words were derived, the frequency of appearance was calculated, and the results were visualized in word cloud and N-gram. The top 70 words by frequency of appearance were used to generate a matrix, structural equivalence analysis was performed, and the results were displayed using network visualization and dendrograms. The collected data revealed that smart factory had high social issues, but consumer interest and academic research were insufficient, and the amount and frequency of related words on the fashion platform were both high. As a result of structural equalization analysis, it was found that fashion platforms with strong connectivity between clusters are creating new competitiveness with service platforms that add sharing, manufacturing, and curation functions, and fashion smart factories can expect future value to grow together, according to digital technology innovation and platforms. This study can serve as a foundation for future research topics related to fashion platforms and smart factories.

Identification of Strategic Fields for Developing Smart City in Busan Using Text Mining (텍스트 마이닝을 이용한 스마트 도시계획 수립을 위한 전략분야 도출연구: 부산 사례를 바탕으로)

  • Chae, Yoonsik;Lee, Sanghoon
    • Journal of Digital Convergence
    • /
    • v.16 no.11
    • /
    • pp.1-15
    • /
    • 2018
  • The purpose of this study is to analyze bibliographic information of Busan and other cities' reports for urban development initiative and identify the strategic fields for future smart city plan. Text mining method is used in this study to extract keywords and identify the characteristics and patterns of information in urban development reports. As a result, in earlier stage, Busan city focused on service creation for industrial development but there are lack of discussions on the linkage of information systems with ICT technology. However, recent urban planning in Busan contained various contents related to integrated connections of infrastructure, ICT system, and operation management of city in the specific fields of traffic, tourism, welfare, port/logistics, culture/MICE. This results of study is expected to provide policy implications for planning the future urban initiatives of smart city development.

An Empirical Study on Manufacturing Process Mining of Smart Factory (스마트 팩토리의 제조 프로세스 마이닝에 관한 실증 연구)

  • Taesung, Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.4
    • /
    • pp.149-156
    • /
    • 2022
  • Manufacturing process mining performs various data analyzes of performance on event logs that record production. That is, it analyzes the event log data accumulated in the information system and extracts useful information necessary for business execution. Process data analysis by process mining analyzes actual data extracted from manufacturing execution systems (MES) to enable accurate manufacturing process analysis. In order to continuously manage and improve manufacturing and manufacturing processes, there is a need to structure, monitor and analyze the processes, but there is a lack of suitable technology to use. The purpose of this research is to propose a manufacturing process analysis method using process mining and to establish a manufacturing process mining system by analyzing empirical data. In this research, the manufacturing process was analyzed by process mining technology using transaction data extracted from MES. A relationship model of the manufacturing process and equipment was derived, and various performance analyzes were performed on the derived process model from the viewpoint of work, equipment, and time. The results of this analysis are highly effective in shortening process lead times (bottleneck analysis, time analysis), improving productivity (throughput analysis), and reducing costs (equipment analysis).

Text-Mining Analysis of Korea Government R&D Trends in Construction Machinery Domains (텍스트 마이닝을 통한 건설기계분야 국내 정부 R&D 연구동향 분석)

  • Bom Yun;Joonsoo Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.spc
    • /
    • pp.1-8
    • /
    • 2023
  • To investigate the national science and technology policy direction in the field of construction machinery, an analysis was conducted on projects selected as national research and development (R&D) initiatives by the government. Assuming that the project titles contain key keywords, text mining was employed to substantiate this assumption. Project information data spanning nine years from 2014 to 2022 was collected through the National Science & Technology Information Service (NTIS). To observe changes over time, the years were divided into three-year sections. To analyze research trends efficiently, keywords were categorized into groups: 'equipment,' 'smart,' and 'eco-friendly.' Based on the collected data, keyword frequency analysis, N-gram analysis, and topic modeling were performed. The research findings indicate that domestic government R&D in the construction machinery field primarily focuses on smart-related research and development. Specifically, investments in monitoring systems and autonomous operation technologies are increasing. This study holds significance in analyzing objective research trends through the utilization of big data analysis techniques and is expected to contribute to future research and development planning, strategic formulation, and project management.

Performance Comparison of Decision Trees of J48 and Reduced-Error Pruning

  • Jin, Hoon;Jung, Yong Gyu
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.30-33
    • /
    • 2016
  • With the advent of big data, data mining is more increasingly utilized in various decision-making fields by extracting hidden and meaningful information from large amounts of data. Even as exponential increase of the request of unrevealing the hidden meaning behind data, it becomes more and more important to decide to select which data mining algorithm and how to use it. There are several mainly used data mining algorithms in biology and clinics highlighted; Logistic regression, Neural networks, Supportvector machine, and variety of statistical techniques. In this paper it is attempted to compare the classification performance of an exemplary algorithm J48 and REPTree of ML algorithms. It is confirmed that more accurate classification algorithm is provided by the performance comparison results. More accurate prediction is possible with the algorithm for the goal of experiment. Based on this, it is expected to be relatively difficult visually detailed classification and distinction.

The Adaptive SPAM Mail Detection System using Clustering based on Text Mining

  • Hong, Sung-Sam;Kong, Jong-Hwan;Han, Myung-Mook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.2186-2196
    • /
    • 2014
  • Spam mail is one of the most general mail dysfunctions, which may cause psychological damage to internet users. As internet usage increases, the amount of spam mail has also gradually increased. Indiscriminate sending, in particular, occurs when spam mail is sent using smart phones or tablets connected to wireless networks. Spam mail consists of approximately 68% of mail traffic; however, it is believed that the true percentage of spam mail is at a much more severe level. In order to analyze and detect spam mail, we introduce a technique based on spam mail characteristics and text mining; in particular, spam mail is detected by extracting the linguistic analysis and language processing. Existing spam mail is analyzed, and hidden spam signatures are extracted using text clustering. Our proposed method utilizes a text mining system to improve the detection and error detection rates for existing spam mail and to respond to new spam mail types.

Big Data Analysis in School Adjustment Factors using Data Mining

  • Ko, Sujeong
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.87-97
    • /
    • 2019
  • Data mining technology is applied to various fields because it is a technique for analyzing vast amount of data and finding useful information. In this paper, we propose a big data analysis method that uses Apriori algorithm, which is a data mining technique, to find the related factors that have negative and positive influences on school adjustment. Among Korea Child and Youth Panel Survey(KCYPS), data related to adjustment to school life and data showing parental inclinations were extracted from the data of fourth grade elementary school students, first year middle school students, and high school freshman students, respectively and we have mapped the useful association rules among them. As a result, the factors affecting school adjustment were different according to the timing of the growth process, we were able to find interesting rules by looking for connections between rules. On the other hand, the factors that positively influenced school adjustment were not significantly different from each other, and overall, they were associated with positive variables.

Privacy Concerns of Smart Speaker Users in South Korea: A Text-mining Analysis

  • Hong Joo Lee;Guglielmo Maccario;Maurizio Naldi
    • Asia pacific journal of information systems
    • /
    • v.33 no.4
    • /
    • pp.999-1015
    • /
    • 2023
  • Smart speakers represent a growing product in home electronics. However, their capability to record voices in their immediate surroundings has spurred concerns about privacy violations. In this paper, we assess the extent of those concerns in the opinions of smart speaker users by examining the reviews posted by smart speaker users. We focus on South Korea as a representative of advanced Asian economies. The results show that Korean smart speaker users are either unconcerned or unaware of privacy issues, confirming the results of previous studies about UK users, but with an even lower degree of interest in the topic. However, for the few users concerned about privacy, their attitude towards privacy influences their overall opinion about smart speakers.

Recommended Chocolate Applications Based On The Propensity To Consume Dining outside Using Big Data On Social Networks

  • Lee, Tae-gyeong;Moon, Seok-jae;Ryu, Gihwan
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.325-333
    • /
    • 2020
  • In the past, eating outside was usually the purpose of eating. However, it has recently expanded into a restaurant culture market. In particular, a dessert culture is being established where people can talk and enjoy. Each consumer has a different tendency to buy chocolate such as health, taste, and atmosphere. Therefore, it is time to recommend chocolate according to consumers' tendency to eat out. In this paper, we propose a chocolate recommendation application based on the tendency to eat out using data on social networks. To collect keyword-based chocolate information, Textom is used as a text mining big data analysis solution.Text mining analysis and related topics are extracted and modeled. Because to shorten the time to recommend chocolate to users. In addition, research on the propensity of eating out is based on prior research. Finally, it implements hybrid app base.