Journal of the Korea Institute of Information Security & Cryptology
/
v.25
no.4
/
pp.767-780
/
2015
In recent years, as smart phone penetration rate is growing explosively, new forms of cyber crime data is poured out beyond the limits of management system for cyber crime investigation. These new forms of data are collected and stored in police station but, some of data are not systematically managed. As a result, investigators sometimes miss the hidden data which can be critical for a case. Crime data is usually generated by computer which produces complex and huge data and records many logs automatically, so it is necessary to simplify a collected data and cluster by crime pattern. In this paper, we categorize all kinds of cyber crime and simplify crime database and extract critical clues relative to other cases. Through data mining and network-visualization, we found there is correlation between clues of a case. From this result, we conclude cyber crime data mining helps crime prevention, early blocking and increasing the efficiency of the investigation.
The purpose of this study is to explore the trend of blockchain technology through analysis of patents and news articles using text mining, and to suggest the blockchain policy agenda by grasping social interests. For this purpose, 327 blockchain-related patent abstracts in Korea and 5,941 full-text online news articles were collected and preprocessed. 12 patent topics and 19 news topics were extracted with latent dirichlet allocation topic modeling. Analysis of patents showed that topics related to authentication and transaction accounted were largely predominant. Analysis of news articles showed that social interests are mainly concerned with cryptocurrency. Policy agendas were then derived for blockchain development. This study demonstrates the efficient and objective use of an automated technique for the analysis of large text documents. Additionally, specific policy agendas are proposed in this study which can inform future policy-making processes.
This study conducted topic modeling, association analysis, and sentiment analysis focused on text mining in order to reflect regional characteristics in the process of establishing an information plan in Chungcheongbuk-do. As a result of the analysis, it was confirmed that Chungcheongbuk-do occupies a relatively high proportion of educational activities to bridge the information gap, and is interested in improving infrastructure to provide non-face-to-face, untouched administrative services, and bridge the gap between urban and rural areas. In addition, it is necessary to refer to the fact that there is a positive evaluation of the combination of bio and IT in the regional strategic industry and examples of ICT innovation services. It has been confirmed that smart cities have high expectations for the establishment of various cooperation systems with IT companies, but continuous crisis management is necessary so that they are not related to political issues. It is hoped that the results of this study can be used as one of the methods to specifically reflect regional changes in the process of informatization.
As the global economy stagnated due to the Corona 19 virus from Wuhan, China, most countries, including the US Federal Reserve System, introduced policies to boost the economy by increasing the amount of money. Most of the stock investors tend to invest only by listening to the recommendations of famous YouTubers or acquaintances without analyzing the financial statements of the company, so there is a high possibility of the loss of stock investments. Therefore, in this research, I have used artificial intelligence deep learning techniques developed under the existing automatic trading conditions to analyze and predict macro-indicators that affect stock prices, giving weights on individual stock price predictions through correlations that affect stock prices. In addition, since stock prices react sensitively to real-time stock market news, a more accurate stock price prediction is made by reflecting the weight to the stock price predicted by artificial intelligence through stock market news text mining, providing stock investors with the basis for deciding to make a proper stock investment.
Experimental and discrete element methods were used to investigate the effects of triple joints lengths and triple joint angle on the failure behavior of rock mass under uniaxial compressive test. Concrete samples with dimension of 20 cm × 20 cm × 5 cm were prepared. Within the specimen, three imbedded joint were provided. The joint lengths were 2 cm, 4cm and 6 cm. In constant joint lengths, the angle between middle joint and other joints were 30°, 60°, 90°, 120° and 150°. Totally 15 different models were tested under compression test. The axial load rate on the model was 0.05 mm/min. Concurrent with experimental tests, the models containing triple joints, length and joint angle are similar to the experiments, were numerical by Particle flow code in two dimensions (PFC2D). Loading rate in numerical modelling was 0.05 mm/min. Tensile strength of material was 1 MPa. The results show that the failure behaviors of rock samples containing triple joints were governed by both of the angle and the length of the triple joints. The uniaxial compressive strengths (UCS) of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behavior of discontinuities is related to the number of the induced tensile cracks which are increased by decreasing the joint length. Along with the damage failure of the samples, the acoustic emission (AE) activities are excited. There were only a few AE hits in the initial stage of loading, then AE hits rapidly grow before the applied stress reached its peak. In addition, every stress drop was accompanied by a large number of AE hits. Finally, the failure pattern and failure strength are similar in both methods i.e., the experimental testing and the numerical simulation methods.
This study was conducted using text mining and network theory to extract useful information for application for occupancy and performance of permit tasks contained in the permit contents from the permit register, which is used only for the simple purpose of recording occupancy permit information. Based on text mining, we analyzed and compared the frequency of vocabulary occurrence and topic modeling in five regions, including Seoul, Gyeonggi, Gyeongsang, Jeolla, Chungcheong, and Gangwon, as well as normalization processes such as stopword removal and morpheme analysis. By applying four types of centrality algorithms, including stage, proximity, mediation, and eigenvector, which are widely used in network theory, we looked at keywords that are in a central position or act as an intermediary in the network. Through a comprehensive analysis of vocabulary appearance frequency, topic modeling, and network centrality, it was found that the 'installation' keyword was the most influential in all regions. This is believed to be the result of the Ministry of Environment's permit management office issuing many permits for constructing facilities or installing structures. In addition, it was found that keywords related to road facilities, flood control facilities, underground facilities, power/communication facilities, sports/park facilities, etc. were at a central position or played a role as an intermediary in topic modeling and networks. Most of the keywords appeared to have a Zipf's law statistical distribution with low frequency of occurrence and low distribution ratio.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.5
/
pp.1027-1034
/
2024
This study aims to address the issues of outliers and missing values in AI-based smart farming to improve data quality and enhance the accuracy of agricultural predictive activities. By utilizing real data provided by the Rural Development Administration (RDA) and the Korea Agency of Education, Promotion, and Information Service in Food, Agriculture, Forestry, and Fisheries (EPIS), outlier detection and missing value imputation techniques were applied to collect and manage high-quality data. For successful smart farm operations, an IoT-based AI automatic growth measurement model is essential, and achieving a high data quality index through stable data preprocessing is crucial. In this study, various methods for correcting outliers and imputing missing values in growth data were applied, and the proposed preprocessing strategies were validated using machine learning performance evaluation indices. The results showed significant improvements in model performance, with high predictive accuracy observed in key evaluation metrics such as ROC and AUC.
Journal of the Korean Regional Science Association
/
v.34
no.4
/
pp.61-74
/
2018
This study aims to analyze the convergence change of smart city industries in Korea. Industries of Smart city can be defined ICTs and Knowledge embedded construction industry. The input output model and structural path analysis have been done using the input output tables published by Bank of Korea in 1980 and 2014. GDP deflator was applied to the input output tables. 403 industries were reclassified into 27 industries and 8 industries categories: Agriculture and Mining(AM), Non-IT Manufacture(NITM), IT Manufacture(ITM), Energy Supply(EnS), Construction as smart city(C), IT Service(ITS), Knowledge Service(KS), Etc. Service(EtS). The results are as follows; First, the input output coefficient analysis showed that The information and communication service industry(ITS) and the energy supply industry(EnS) have increased input to the construction industry(C). On the other hands, knowledge service industry(KS) and etc. service industries(EtS) decreased. Second, the multiplier analysis revealed that construction industry(C) led by smart city had a great influence on ITS, EnS, ITM and NITM directly and indirectly. Furthermore, The IT industry had the biggest change from 1980 to 2014. Third, the smart city industry has created a new convergence of 117, and it has been leading to segmentation of the structure. Change of convergence has been proceeding mainly in the ITS and EnS, NITM, ITM industries.
In March 2020, as it was declared a COVID-19 pandemic, various quarantine measures were taken. Accordingly, many changes have occurred in the tourism and hospitality industries. In particular, quarantine guidelines, such as the introduction of non-face-to-face services and social distancing, were implemented in the restaurant industry. For decades, research on restaurant attributes has emphasized the importance of three attributes: atmosphere, service quality, and food quality. Nevertheless, to the best of our knowledge, research on restaurant attributes considering the COVID-19 situation is insufficient. To respond to this call, this study attempted an exploratory approach to classify new restaurant attributes based on understanding environmental changes. This study considered 31,115 online reviews registered in Naverplace as an analysis unit, with 475 general restaurants located in Euljiro, Seoul. Further, we attempted to classify restaurant attributes by clustering words within online reviews through TF-IDF and LDA topic modeling techniques. As a result of the analysis, the factors of "prevention of infectious diseases" were derived as new attributes of restaurants in the context of COVID-19 situations, along with the atmosphere, service quality, and food quality. This study is of academic significance by expanding the literature of existing restaurant attributes in that it categorized the three attributes presented by existing restaurant attributes and further presented new attributes. Moreover, the analysis results have led to the formulation of practical recommendations, considering both the operational aspects of restaurants and policy implications.
As the technology of drone develops, the use of drone is increasing, In addition, the types of sensors that are inside of smart phones are becoming various and the accuracy is enhancing day by day. Various of researches are being progressed. Therefore, we need to control drone by using smart phone's sensors. In this paper, we propose the most suitable machine learning model that matches the gyro sensor data with drone's moving. First, we classified drone by it's moving of the gyro sensor value of 4 and 8 degree of freedom. After that, we made it to study machine learning. For the method of machine learning, we applied the One-Rule, Neural Network, Decision Tree, and Navie Bayesian. According to the result of experiment that we designated the value from gyro sensor as the attribute, we had the 97.3 percent of highest accuracy that came out from Naive Bayesian method using 2 attributes in 4 degree of freedom. On and the same, in 8 degree of freedom, Naive Bayesian method using 2 attributes showed the highest accuracy of 93.1 percent.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.