• 제목/요약/키워드: smart materials

검색결과 1,077건 처리시간 0.027초

국내 건축분야 3D 프린팅 시장 성숙도 기반 단계별 유통플랫폼 구축방안에 관한 연구 (A Study on the Phased Development Plan of Distribution Platform Based on 3D Printing Market Maturity in Domestic Architecture)

  • 정수매;원지선;신재영;주기범
    • 한국산업융합학회 논문집
    • /
    • 제24권6_2호
    • /
    • pp.849-860
    • /
    • 2021
  • Recently, it is easy to find cases of 3D printing product, equipment, and materials in the architecture field. However, there is a lack of distribution environment where 3D printing products can be traded on an online platform or to access on-demand services in the architecture field. Therefore, in this study, a distribution platform development plan was proposed in consideration of the maturity level of the 3D printing distribution market in the domestic architecture field. For this purpose, the research was carried out as follows. First, by analyzing the case of the 3D printing distribution platform, the development stage of the distribution platform was set as three stages from the perspective of market maturity, platform development level, and sales/purchase experience level of suppliers and consumers. Second, the market maturity of the current domestic architecture field was evaluated as the first stage, and a distribution platform that could be implemented in the first stage was presented as a pilot. Third, we presented the first stage pilot, collected practical opinions on future construction plans through in-depth interviews, and presented detailed implementation plans for each stage necessary to achieve the second and third stage market maturity goals. Based on the roadmap derived from this study, it is expected that the domestic distribution platform market will grow step by step in the future and be utilized for business model development.

Best Practices on Educational Service Platform with AI Approach

  • Hong, Je Seong;Park, Bo Kyung;Kwak, Jeil;Kim, R. Young Chul;Son, Hyun Seung
    • International journal of advanced smart convergence
    • /
    • 제8권4호
    • /
    • pp.40-46
    • /
    • 2019
  • The current education is becoming more extensive with the application of various teaching methods. This is a problem that is so distributed that it is difficult for users to find the data and it takes a long time to find the information they need. Currently, various educational services, materials, and instruments are developed and scattered. Therefore, it is important to raise students' awareness of aptitude and career path with customized education tailored to students. Conventional education platforms have very difficult to choose the right materials for students because of the spread of educational programs and institution materials. To solve this, we propose a customized recommendation approach to recommend customized educational service materials and institution for students to teachers, which helps teachers conveniently choose materials suitable for their respective environments. On this new platform, the CNN algorithm provides recommended content for classes and students. For real service on the educational service platform, we implement this system for Jeil edus business. Through this mechanism, we expect to improve the quality of education by helping to select the right service.

솔-젤 스핀 코팅에 의해 증착된 텅스텐 산화물 박막의 반응 온도에 따른 전기변색특성 연구 (The electrochromic properties of tungsten oxide thin films coated by a sol-gel spin coating under different reactive temperature)

  • 심희상;나윤채;조인화;성영은
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.128-128
    • /
    • 2003
  • Electrochromism (EC) is defined as a phenomenon in which a change in color takes place in the presence of an applied voltage. Because of their low power consumption, high coloration efficiency, EC devices have a variety of potential applications in smart windows, mirror, and optical switching devices. An EC devices generally consist of a transparent conducting layer, electrochromic cathodic and anodic coloring materials and an ion conducting electrolyte. EC has been widely studied in transition metal oxides(e.g., WO$_3$, NiO, V$_2$O$\sub$5/) Among these materials, WO$_3$ is a most interesting material for cathodic coloration materials due to its lush coloration efficiency (CE), large dynamic range, cyclic reversibility, and low cost material. WO$_3$ films have been prepared by a variety of methods including vacuum evaporation, chemical vapor deposition, electrodeposition process, sol-gel synthesis, sputtering, and laser ablation. Sol-gel process is widely used for oxide film at low temperature in atmosphere and requires lower capital investment to deposit large area coating compared to vacuum deposition process.

  • PDF

Anticancer Loaded Multi-wall Carbon Nanotube for Targeting Tumors

  • Wang, Wenping;Choi, Jung-Il;Kang, Sang-Soo;Nam, Tae-Hyun;Khang, Dong-Woo
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.52.2-52.2
    • /
    • 2011
  • Flat form technology for constructing anticancer loaded multi-walled carbon nanotubes (mwCNTs) was introduced in this study. Conventional anticancer drugs, such as MTX (Methotrexate), cisplatin, DOX (Doxorubicin hydrochloride), DAU (Daunorubicin) and EPI (epirubicin) were bio-conjugated with folic acid (FA) for selective targeting tumor cells. Loading efficiencies of the used anticancer drugs on mwCNTs have shown different order of bindings depending on the molecular bind affinity of NH (amine) formation on mwCNTs. MTT assays have shown increased selective target efficiency of FA conjugated mwCNTs on breast cancer cell growth inhibition. All results collectively indicated promising application of mwCNTs as a smart inorganic nanomaterial for selective targeting drug delivery vehicle at tumor tissues.

  • PDF

전기방사방법에 의해 합성된 ZnO 중공 나노섬유의 trimethylamine 가스 감응 특성 (Trimethylamine Sensing Characteristics of Molybdenum doped ZnO Hollow Nanofibers Prepared by Electrospinning)

  • 김보영;윤지욱;이철순;박준식;이종흔
    • 센서학회지
    • /
    • 제24권6호
    • /
    • pp.419-422
    • /
    • 2015
  • Pure and Mo-doped ZnO hollow nanofibers were prepared by single capillary electrospinning and their gas sensing characteristics toward 5 ppm ethanol, trimethylamine (TMA), CO and $H_2$ were investigated. The gas responses and responding kinetics were dependent upon sensing temperature and Mo doping. Mo-doped ZnO hollow nanofibers showed high response to 5 ppm TMA ($R_a/R_g=111.7$, $R_a$: resistance in air, $R_g$: resistance in gas) at $400^{\circ}C$, while the responses of pure ZnO hollow nanofibers was low ($R_a/R_g=47.1$). In addition, the doping of Mo enhanced selectivity toward TMA. The enhancement of gas response and selectivity to TMA by Mo doping to ZnO nanofibers was discussed in relation to the interaction between basic analyte gas and acidic additive materials.

Creep of stainless steel under heat flux cyclic loading (500-1000℃) with different mechanical preloads in a vacuum environment using 3D-DIC

  • Su, Yong;Pan, Zhiwei;Peng, Yongpei;Huang, Shenghong;Zhang, Qingchuan
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.759-768
    • /
    • 2019
  • In nuclear fusion reactors, the key structural component (i.e., the plasma-facing component) undergoes high heat flux cyclic loading. To ensure the safety of fusion reactors, an experimental study on the temperature-induced creep of stainless steel under heat flux cyclic loading was performed in the present work. The strains were measured using a stereo digital image correlation technique (3D-DIC). The influence of the heat haze was eliminated, owing to the use of a vacuum environment. The specimen underwent heat flux cycles ($500^{\circ}C-1000^{\circ}C$) with different mechanical preloads (0 kN, 10 kN, 30 kN, and 50 kN). The results revealed that, for a relatively large preload (for example, 50 kN), a single temperature cycle can induce a residual strain of up to $15000{\mu}{\varepsilon}$.

Simulation of High Vacuum Characteristics by VacTran Simulator

  • Kim, Hyung-Taek;Jeong, Hyeongwon
    • International journal of advanced smart convergence
    • /
    • 제11권4호
    • /
    • pp.88-95
    • /
    • 2022
  • Vacuum simulation is associated with the prediction and calculation of how materials, pumps and systems will perform using mathematical equations. In this investigation, three different high vacuum systems were simulated and estimated with each vacuum characteristics by VacTran simulator. In each of modelled vacuum systems, selection of gas loads into vessel, combination of rough and high vacuum pumps and dimension of conductance elements were proposed as system variables. In pump station model, the pumping speed to pressures by the combination of root pump was analyzed under the variations of vessel volume. In this study, the effects of outgassing dependent on vessel materials was also simulated and aluminum vessel was estimated to optimum materials. It was obtained from the modelling with diffusion pump that the diameter, length of 50×250[mm]roughing line was characterized as optimum variables to reach the ultimate pressure of 10E-7[torr]. Optimum design factors for vacuum characteristics of modelled vacuum system were achieved by VacTran simulator. Feasibility of VacTran as vacuum simulator was verified and applications of VacTran in high tech process expected to be increased.

Capillarity-Driven Self-Assembly of Silver Nanowires-Coated Fibers for Flexible and Stretchable Conductor

  • Li, Yi;Chen, Jun;Han, Xiao;Li, Yinghui;Zhang, Ziqiang;Ma, Yanwen
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850146.1-1850146.9
    • /
    • 2018
  • The rapid development of smart textiles requires the large-scale fabrication of conductive fibers. In this study, we develop a simple, scalable and low-cost capillary-driven self-assembly method to prepare conductive fibers with uniform morphology, high conductivity and good mechanical strength. Fiber-shaped flexible and stretchable conductors are obtained by coating highly conductive and flexible silver nanowires (Ag NWs) on the surfaces of yarn and PDMS fibers through evaporation-induced flow and capillary-driven self-assembly, which is proven by the in situ optical microscopic observation. The density of Ag NWs and linear resistance of the conductive fibers could be regulated by tuning the assembly cycles. A linear resistance of $1.4{\Omega}/cm$ could be achieved for the Ag NWs-coated nylon, which increases only 8% after 200 bending cycle, demonstrating high flexibility and mechanical stability. The flexible and stretchable conductive fibers have great potential for the application in wearable devices.

상변화물질을 이용한 PMMA 복합필름의 방열 성능 향상에 관한 연구 (A Study on Heat Dissipation Characteristics of PMMA Composite Films with Phase Change Material)

  • 권준혁;윤범용;조승현;;김형익;김동현;박경의;서종환
    • Composites Research
    • /
    • 제30권5호
    • /
    • pp.288-296
    • /
    • 2017
  • 본 연구에서는 전자기기 사용에 이슈가 되고 있는 발열 문제를 해결하고자 상변화물질(PCM)의 잠열 특성을 이용하여 폴리메틸메타크릴레이트(PMMA) 복합필름을 제조하고 방열 성능을 평가하였다. 이를 위해 용융온도가 서로 다른 두 가지의 상변화물질을 사용하여 제작한 PCM/PMMA 복합필름의 열적 특성을 비교 분석하여 다양한 사용조건에 따른 유효성을 검증하였고, Compression Molding 방법과 PCM Paste Sealing 방법에 따른 PCM/PMMA 복합필름의 방열 특성을 비교 분석하여 최대의 방열 효과를 달성할 수 있는 최적의 방법을 도출하였다. 또한 PCM/PMMA 복합필름의 방열 성능을 최대화하기 위해 열전도율이 높은 흑연과 그래핀을 추가로 적층하여 제조한 Hybrid 복합필름의 열적 특성을 분석하였고, 이들을 통해 향상된 방열 성능을 실험적으로 검증하였다. 본 연구를 통해 개발된 방열 성능이 우수한 복합필름은 다양한 전자기기에 활용되어 발열 문제를 효과적으로 해결할 수 있을 것으로 기대된다.

PZT 파우더 첨가에 따른 티타늄 파우더/폴리머 콘크리트 복합재료의 진동 특성 및 압축 물성 분석 (Effects of PZT Powder on Vibration and Compression Properties of Ti Powder/Polymer Concrete Composites)

  • 박재현;김석룡;김경수;김건;김석호;이범주;정안목;안종욱;김선주;이시맥;유형민
    • Composites Research
    • /
    • 제35권3호
    • /
    • pp.134-138
    • /
    • 2022
  • 본 연구에서는 기존 폴리머 콘크리트의 진동 감쇠 효과를 향상시키기 위해 압전 재료 중 하나인 PZT 파우더를 첨가하여 티타늄 파우더/폴리머 콘크리트 복합재료를 제작하였다. 티타늄 파우더는 압전 효과를 이용한 진동특성 변화를 극대화하기 위해 일정한 비율로 유지하였고, PZT 파우더를 첨가하지 않은 시편, PZT 파우더를 2.5 wt%, 5 wt% 첨가한 세 가지 종류의 복합재료 시편을 제작하였으며, 모든 시편에 대해 진동 특성 및 압축 물성 분석을 진행하였다. 그 결과, PZT 파우더 첨가 비율이 높아질수록 티타늄 파우더/폴리머 콘크리트에서 발생한 진동이 전달될 때 압전 효과로 인해 공진주파수에서 전달 함수 Inertance 값이 작아지는 것을 확인하였고, 특히 PZT 파우더 5 wt% 첨가 시편의 경우, 공진주파수에서 Inertance 값은 PZT가 첨가되지 않은 시편에 비해 약 19.3% 감소하는 것으로 나타났다. 시간에 따른 가속도 변화 폭 역시 PZT 파우더가 첨가됨에 따라 크게 감소하는 것으로 나타나 PZT 첨가에 따른 효과를 확인할 수 있었다. 또한, 압축강도 시험을 통해 5 wt%까지의 PZT 첨가에 의한 압축 물성 저하 정도는 미미한 것으로 나타났고, 시편 단면 분석을 통해 파우더가 고르게 분산된 것을 확인하였다.