• 제목/요약/키워드: smart materials

검색결과 1,077건 처리시간 0.028초

네트워크 기반 지하형 탄약고의 물류 발전방안 연구 (Logistics Development Plan for Underground Ammunition Depots based on Network)

  • 김병규
    • 인터넷정보학회논문지
    • /
    • 제23권3호
    • /
    • pp.137-145
    • /
    • 2022
  • 지하형 탄약고에 보관된 탄약의 물류는 저장공간의 특성상 지상에 보관된 탄약의 물류 보다 더 많은 어려움을 내포하고 있어, 이러한 문제점을 해결하여 지하형 탄약고의 물류를 향상 시키고자 본 연구를 실시하였다. 그래서 물류 개선을 위한 항목으로 경계, 안전, 환경, 물류체계, 장비설비, 수명관리 등 6개를 선정하였다. 그리고 AHP 기법으로 전문가들의 설문을 받아서 Expert Choice 프로그램으로 분석하였다. 분석 결과 안전, 경계, 수명관리, 장비설비, 물류체계, 환경 순으로 중요도가 높음을 확인하였다. 선정된 항목과 설문 결과를 토대로 지하형 탄약고에서 물류를 향상 시킬 수 있는 네트워크 기반 통합 플랫폼 구축 방안을 제시하였다. 본 연구는 향후 지하형 탄약고를 신축할 때 통합 플랫폼 구축을 위한 근거자료로 활용될 것이다. 본 연구는 군의 다른 물자를 저장하는 저장시설과 민간 기업의 대형 저장시설에서도 적용이 가능할 것으로 기대된다.

Structural glass panels: An integrated system

  • Bidini, G.;Barelli, L.;Buratti, C.;Castori, G.;Belloni, E.;Merli, F.;Speranzini, E.
    • Smart Structures and Systems
    • /
    • 제30권3호
    • /
    • pp.327-332
    • /
    • 2022
  • In building envelope, transparent components play an important role. The structural glazing systems are the weak element of the casing in terms of mechanical resistance, thermal and acoustic insulation. In the present work, new structural glass panels with granular aerogel in interspace were investigated from different points of view. In particular, the mechanical characterization was carried out in order to assess the resistance to bending of the single glazing pane. To this end, a special instrument system was built to define an alternative configuration of the coaxial double ring test, able to predict the fracture strength of glass large samples (400 × 400 mm) without overpressure. The thermal and lighting performance of an innovative double-glazing façade with granular aerogel was evaluated. An experimental campaign at pilot scale was developed: it is composed of two boxes of about 1.60 × 2 m2 and 2 m high together with an external weather station. The rooms, identical in terms of size, construction materials, and orientation, are equipped with a two-wing window in the south wall surface: the first one has a standard glazing solution (double glazing with air in interspace), the second room is equipped with the innovative double-glazing system with aerogel. The indoor mean air temperature and the surface temperature of the glass panes were monitored together with the illuminance data for the lighting characterization. Finally, a brief energy characterization of the performance of the material was carried out by means of dynamic simulation models when the proposed solution is applied to real case studies.

그래핀/탄소나노섬유 코팅된 3D 프린팅 고분자 구조를 이용한 신축성 스트레인 센서 (Stretchable Strain Sensors Using 3D Printed Polymer Structures Coated with Graphene/Carbon Nanofiber Hybrids)

  • 나승찬;이현종;임태경;윤정민;석지원
    • Composites Research
    • /
    • 제35권4호
    • /
    • pp.283-287
    • /
    • 2022
  • 신축성 스트레인 센서는 웨어러블 기기나 건강 모니터링과 같은 미래 응용 분야에 적용하기 위하여 개발되고 있는데, 센서의 신뢰성을 높이기 위해 안정성과 반복성이 고려되어야 한다. 본 연구에서는 3D 프린팅을 통해 키리가미 패턴이 있는 고분자 구조를 제작하여 센서의 신축성과 히스테리시스를 개선하였다. 견고한 전도성 네트워크를 구현하기 위하여 그래핀과 탄소나노섬유를 혼합한 하이브리드 소재를 고분자 구조에 코팅하였다. 제작한 신축성 스트레인 센서는 32%의 스트레인에 대해 게이지팩터가 36을 보였으며, 1%부터 30%까지의 다양한 스트레인에 대해서 안정적인 저항 변화 응답을 나타냈다.

전기화재 예측 및 예방을 위한 IoT 플랫폼 시스템 (IoT Platform System for Electric Fire Prediction and Prevention)

  • 양승의;이성옥;정회경
    • 한국정보통신학회논문지
    • /
    • 제26권2호
    • /
    • pp.223-229
    • /
    • 2022
  • 매년 날씨가 추워지는 동절기에는 전기 사용량이 급증하는 특징을 보인다. 많은 전기를 사용하면서 인구 밀도가 높은 시장, 목욕탕, 아파트 등의 건물들의 전기 시설의 누전으로 인해 화재 발생이 늘어나고 있다. 이러한 누전화재의 원인은 대부분 전선의 노후화로 인해 사용량이 증가되어 과도하게 걸리는 부하를 견디지 못하고 전선피복이 녹아내려 주변의 발화물질로 인하여 발생하게 된다. 본 논문에서는 과부하센서, VoC센서, 과열센서로 구성된 복합 센서를 통해 전선에 발생하는 부하 및 과열을 측정하며, 이 때 발생된 유독가스를 검출하고 게이트웨이를 활용하여 서버에 로깅하는 시스템을 구현한다. 이를 바탕으로 빅데이터 분석을 진행하여 실시간으로 전기화재를 예측, 경보 및 차단이 가능한 플랫폼과 모의 화재발생 실험이 가능한 시뮬레이터를 개발한다.

반강결 프레임 구조물의 시스템 신뢰성 해석 - 비닐하우스를 중심으로 - (Structural System Reliability Analysis of Semi-rigid Connected Frame - Focused on Plastic Greenhouse -)

  • 이상익;이종혁;정영준;김동수;서병훈;서예진;최원
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.67-77
    • /
    • 2022
  • Recently, the trend in structural analysis and design is moving towards the development of reliable system. The reliability-based method defines various limit states related to usability and failure, thereby enabling multiple levels of design according to the importance of a structure. Meanwhile, an actual structure is composed of a set of several elements, and particularly, a frame type is composed of a system in which the members are connected each other. At this time, the actual connection between members is in a semi-rigid condition, not in complete rigid or hinged. This semi-rigid is found in several structures, especially in agricultural facilities designed with lightweight materials. In this study, a system reliability analysis technique for frame structure was established, and applied to an analysis of the semi-rigid connection. Various conditions of correlation were applied to reflect the connectivity between members, and through this, the limitations of existing structural analysis method and the behavioral characteristics of structure were analyzed. The failure probability of the frame member component and the overall structure system was significantly different in consideration of the semi-rigid connection. In addition, it was evaluated that the behavior of structure can be more accurately analyzed if the correlation according to the position of members in a system is further investigated.

코코넛 코이어와 피트모스 혼합 모래 토양의 물리·화학적 특성 (Physicochemical Properties of Root Zone Soil Based on Sand Blending with Coconut Coir and Peat Moss)

  • 김영선;배은지;최문진;김태웅;이긍주
    • 한국환경농학회지
    • /
    • 제41권2호
    • /
    • pp.101-107
    • /
    • 2022
  • BACKGROUND: Soil amendment was necessary applied for the sand that had been used to root zone of green ground in golf course because of its low water retention power and cation exchangeable capacity. This study was conducted to evaluate the effect of the mixed ratio of peat moss and coconut coir as soil amendment materials on the soil physicochemical properties applied to rootzone based on sand. METHODS AND RESULTS: The soil amendments were blended at 0, 3, 5, 7 and 10% by soil volume. The pH in the peat moss treatment was lower than that of control (0% soil amendment), and pH and electrical conductivity (EC) in the coconut coir were higher. The blending ratio of peat moss was negatively correlated with pH of rootzone soil (p<0.01), and that of coconut coir positively with EC (p<0.01). As compared with control, capillary porosity, the physical factors such as air-filled porosity, total porosity, and hydraulic conductivity of rootzone soil were increased by applying peat moss and coconut coir. For correlation coefficients between percentage of soil amendments and soil physical factors, peat moss and coconut coir were positively correlated with porosity and hydraulic conductivity (p<0.01). CONCLUSION(S): These results indicated that the application of peat moss and coconut coir affected on the change of physicochemical properties of rootzone soil, and improved soil porosity and hydraulic conductivity.

Improving the seismic behavior of diagonal braces by developing a new combined slit damper and shape memory alloys

  • Vafadar, Farzad;Broujerdian, Vahid;Ghamari, Ali
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.107-120
    • /
    • 2022
  • The bracing members capable of active control against seismic loads to reduce earthquake damage have been widely utilized in construction projects. Effectively reducing the structural damage caused by earthquake events, bracing systems equipped with retrofitting damper devices, which take advantage of the energy dissipation and impact absorption, have been widely used in practical construction sites. Shape Memory Alloys (SMAs) are a new generation of smart materials with the capability of recovering their predefined shape after experiencing a large strain. This is mainly due to the shape memory effects and the superelasticity of SMA. These properties make SMA an excellent alternative to be used in passive, semi-active, and active control systems in civil engineering applications. In this research, a new system in diagonal braces with slit damper combined with SMA is investigated. The diagonal element under the effect of tensile and compressive force turns to shear force in the slit damper and creates tension in the SMA. Therefore, by creating shear forces in the damper, it leads to yield and increases the energy absorption capacity of the system. The purpose of using SMA, in addition to increasing the stiffness and strength of the system, is to create reversibility for the system. According to the results, the highest capacity is related to the case where the ratio of the width of the middle section to the width of the end section (b1/b) is 1.0 and the ratio of the height of the middle part to the total height of the damper (h1/h) is 0.1. This is mainly because in this case, the damper section has the highest cross-section. In contrast, the lowest capacity is related to the case where b1/b=0.1 and the ratio h1/h=0.8.

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

Corrosion visualization under organic coating using laser ultrasonic propagation imaging

  • Shi, Anseob;Park, Jinhwan;Lee, Heesoo;Choi, Yunshil;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.301-309
    • /
    • 2022
  • Protective coatings are most widely used anticorrosive structures for steel structures. The corrosion under the coating damages the host material, but this damage is completely hidden. Therefore, a field-applicable under-coating-corrosion visualization method has been desired for a long time. Laser ultrasonic technology has been studied in various fields as an in situ nondestructive inspection method. In this study, a comparative analysis was carried out between a guided-wave ultrasonic propagation imager (UPI) and pulse-echo UPI, which have the potential to be used in the field of under-coating-corrosion management. Both guided-wave UPI and pulse-echo UPI were able to successfully visualize the corrosion. Regarding the field application, the guided-wave UPI performing Q-switch laser scanning and piezoelectric sensing by magnetic attachment exhibited advantages owing to the larger distance and incident angle in the laser measurement than those of the pulse-echo UPI. Regarding the corrosion visualization methods, the combination of adjacent wave subtraction and variable time window amplitude mapping (VTWAM) provided acceptable results for the guided-wave UPI, while VTWAM was sufficient for the pule-echo UPI. In addition, the capability of multiple sensing in a single channel of the guided-wave UPI could improve the field applicability as well as the relatively smaller size of the system. Thus, we propose a guided-wave UPI as a tool for under-coating-corrosion management.

국내 고시인성 안전의복의 착용 현황 분석 및 시인성 평가를 통한 착용 의무화 제안 (A Proposal for Workers to Mandatorily Wear High-visibility Safety Clothing in Korea through the Analysis of the Current Status and Evaluation of Its Visibility)

  • 강인형;최병호;오철;육지호
    • 한국의류산업학회지
    • /
    • 제24권4호
    • /
    • pp.471-478
    • /
    • 2022
  • In roadside workplaces, more attention should be paid to the safety of workers. The roadside workers underestimate the effect of the brightness of their clothes and judge that drivers will recognize them easily, and the drivers misjudge that the roadside workers are far away and that the vehicle can be stopped in sufficient time. Therefore, customized safety education reflecting this and wearing work clothes with certified visibility functions are required. In Korea, it is not compulsory for roadside workers and vehicle guide attendants to wear work clothes with a visibility function. In this study, the distance ahead perceived by drivers was measured using manikins wearing certified and non-certified reflective safety vests. The perception distance of the non-certified reflective safety vest was 1.4 times longer than that of the certified reflective safety vest, thus confirming the importance of wearing a certified reflective safety vest. To prevent roadside workers from suffering traffic accidents, we propose the enactment of a law that makes it mandatory for them to wear high-visibility safety clothing. Specifically, Article 32 of the Enforcement Regulation of the Road Traffic Act should include high-visibility safety clothing in life protection equipment, and additionally, to prevent secondary accidents, we propose the enactment of a law requiring the installation and wearing of certified reflective safety vests in vehicles.