• Title/Summary/Keyword: smart materials

Search Result 1,077, Processing Time 0.026 seconds

The Meaning, Method and Tool to Build the Ewha Music Database (EMDB)

  • Kim, Eun-Ha;Chae, Hyun Kyung
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 2020
  • The Ewha Music Database (EMDB) is an online database comprised of primary source materials related to music education from East Asia during the modern era (1880 to 1945) when Korea, Japan, and China were geopolitically and culturally intertwined. We developed the incipit search in EMDB as an embedded tool. This is the first attempt in Korea to implement a unique search function of musical data using alphabets of musical notes. Unlike in traditional search system that uses general literature information search conditions, such as author, title, publisher, year, number of pages, etc., it offers a new way of searching a musical piece/work and sheet music. This study confirms that digital information technology is an important methodology for research of music culture as a field of humanities.

Crystal Growth of $RE_{1-x}Ca_xMnO_3$(RE=La, Nd) by Floating Zone Method (부유대역용융법에 의한 $RE_{1-x}Ca_xMnO_3$ (RE=La, Nd)의 결정성장)

  • 정준기;조남희;김철진;이태근
    • Korean Journal of Crystallography
    • /
    • v.11 no.4
    • /
    • pp.231-237
    • /
    • 2000
  • CMR Materials RE/sub 1-x/Ca/sub x/MnO₃(RE=La, Nd, A=Ca, Sr) were grown using the floating zone image furnace with halogen lamps as heat source. The growth condition was at 2∼10 mm/hr growth rate in air atmosphere, were 445∼50 rpm and 20∼25 rpm of rotation rate of feedrod and growing crystal, respectively. The grown crystals showed shiny black color and annealed at 1500℃ in a box furnace to release the residual stress during cooling. Characterization analyses of the crystal were carried out using XRD and SEM. The crystal structure of Nd/sub 0.7/Ca/sub 0.3/MnO₃ was analyzed with smart CCD XRD was lattice parameter of a=5.425(4)Å, b=5.434(4)Å, and c=7.712(5)Å, an orthorombic system with space group of pbnm.

  • PDF

Clinical considerations of use of titanium link - CAD/CAM zirconia abutment for dental implant in esthetically important areas (심미가 중요시되는 임플란트 치료시 타이타늄 링크-캐드캠 지르코니아 지대주 사용의 임상적 고려)

  • Kim, Jong-Yub
    • The Journal of the Korean dental association
    • /
    • v.54 no.2
    • /
    • pp.123-133
    • /
    • 2016
  • Currently increasing use of implants, especially in anterior implant esthetics has become a major concern for both the patient and dentist. In the case of thin biotype if the thickness of the gingival soft tissue is less than 2mm, human eye can detect differences of colors depends on underlying materials. The zirconia abutment can be use not only for better esthetics but also for the hygienic because it is less attractive for the plaque deposition when it compare to the metals. Zirconia itself has many advantages as a biomaterial but also has frequent mechanical problems when it use for abutment of internal connection implant. For prevention or reduction of mechanical failures, use of titanium-link with zirconia super-structure which part that connects directly into the implant can be a good alternative. In this literature, I would like to review the clinical considerations of use of titanium link - CAD/CAM zirconia abutment for dental implant in esthetically important areas.

  • PDF

Trend and Application for Green Information Technology (그린 IT기술의 국내외 동향과 응용사례)

  • Jin, Tae-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.491-494
    • /
    • 2011
  • We propose a green computing which similar to green chemistry; reduce the use of hazardous materials, maximize energy efficiency during the product' s lifetime, and promote the recyclability or biodegradability of defunct products and factory waste. Research continues into key areas such as making the use of computers as energy-efficient as possible, and designing algorithms and systems for efficiency-related computer technologies.

  • PDF

Fault Detection of an Intelligent Cantilever Beam with Piezoelectric Materials

  • Kwon, Tae-Kyu;Lim, Suk-Jeong;Yu, Kee-Ho;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.97.2-97
    • /
    • 2002
  • A method for the non-destructive detection of damage using parameterized partial differential equations and Galerkin approximation techniques is presented. This method provides the theoretical and experimental verification of a nondestructive time domain approach to examine structural damage in smart structure. The time histories of the vibration response of structure were used to identify the presence of damage. Damage in a structure causes changes in the physical coefficients of mass density, elastic modulus and damping coefficient. This paper examines the beam-like structures with PVDF sensor and PZT actuator to perform identification of those physical parameters and to detect the...

  • PDF

Effect of the Elicit of Microorganism on the Formation of Phloem in Suspension Cultures of Streptanthus tortus (Streptanthus tortus 배양세포에서 미생물 Elicit가 사부형성에 미치는 영향)

  • Cho, Bong-Heuy
    • Journal of Plant Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.195-199
    • /
    • 2003
  • Extracts of Escherichia coli as a elicit were treated to suspension cultures of Streptanthus tostus in order to observe the effect on the pholem development. By the elicit treatment, cell wall, sieve endoplasmic reticulum (SER) and p-protein were normally synthesized, but the structure of amyloplast was changed from a round form to irregular and swollen unhalthy form with a tiny starch granular. Oil drops were new synthesized and accumulated in a large oleoplast and proteins were also accumulated in a single membrane. The concentration of sucrose in the phloem, which was induced during the elicit treatment, was higher than normally developed phloem cells. These results suggest that phloem cells might be changed in the normal cycles of metabolism of lipids, carbohydrates and proteins to overcome during the eilicit stress.

Modeling of fractional magneto-thermoelasticity for a perfect conducting materials

  • Ezzat, M.A.;El-Bary, A.A.
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.707-731
    • /
    • 2016
  • A unified mathematical model of the equations of generalized magneto-thermoelasticty based on fractional derivative heat transfer for isotropic perfect conducting media is given. Some essential theorems on the linear coupled and generalized theories of thermoelasticity e.g., the Lord- Shulman (LS) theory, Green-Lindsay (GL) theory and the coupled theory (CTE) as well as dual-phase-lag (DPL) heat conduction law are established. Laplace transform techniques are used. The method of the matrix exponential which constitutes the basis of the state-space approach of modern theory is applied to the non-dimensional equations. The resulting formulation is applied to a variety of one-dimensional problems. The solutions to a thermal shock problem and to a problem of a layer media are obtained in the present of a transverse uniform magnetic field. According to the numerical results and its graphs, conclusion about the new model has been constructed. The effects of the fractional derivative parameter on thermoelastic fields for different theories are discussed.

Experimental identification of rare-earth magnetic suspensions for micro and meso scale levitating systems

  • Siyambalapitiya, Chamila;De Pasquale, Giorgio;Soma, Aurelio
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.181-192
    • /
    • 2012
  • Magnetic suspensions based on passive levitation of diamagnetic materials on permanent magnets provide attractive systems for several applications on the micro and meso scales. The magnetic properties of these kinds of suspensions dramatically reduce the global mechanical stiffness of the devices providing significant effects on their dynamic response. The goal of this paper is to investigate the static and dynamic behavior of magnetic suspensions with respect to its dependant parameters. Experimental measurements have been performed on the response of dedicated prototypes where the geometrical dimensions and magnetic field strength have been intended as variable parameters. Some benefits have been documented in the fields of energy harvesting and inertial sensing, while additional applications of magnetic suspensions are under investigation.

Simultaneous active strain and ultrasonic measurement using fiber acoustic wave piezoelectric transducers

  • Lee, J.R.;Park, C.Y.;Kong, C.W.
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.185-197
    • /
    • 2013
  • We developed a simultaneous strain measurement and damage detection technique using a pair of surface-mounted piezoelectric transducers and a fiber connecting them. This is a novel sensor configuration of the fiber acoustic wave (FAW) piezoelectric transducer. In this study, lead-zirconate-titanate (PZT) transducers are installed conventionally on a plate's surface, which is a technique used in many structural health monitoring studies. However, our PZTs are also connected with an optical fiber. A FAW and Lamb wave are simultaneously guided in the optical fiber and the structure, respectively. The dependency of the time-of-flight of the FAW on the applied strain is quantified for strain sensing. In our experimental results, the FAW exhibited excellent linear behavior and no hysteresis with respect to the change in strain. On the other hand, the well-known damage detection function of the surface-mounted PZT transducers was still available by monitoring the waveform change in the conventional Lamb wave ultrasonic path.

Numerical analysis of a new SMA-based seismic damper system and material characterization of two commercial NiTi-alloys

  • Olsen, J.S.;Van der Eijk, C.;Zhang, Z.L.
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.137-152
    • /
    • 2008
  • The work presented in this paper includes material characterisation and an investigation of suitability in seismic dampers for two commercially available NiTi-alloys, along with a numerical analysis of a new damper system employing composite NiTi-wires. Numerical simulations of the new damper system are conducted, using Brinson's one-dimensional constitutive model for shape memory alloys, with emphasis on the system's energy dissipation capabilities. The two alloys tested showed some unwanted residual strain at temperatures higher than $A_f$, possibly due to stress concentrations near inclusions in the material. These findings show that the alloys are not ideal, but may be employed in a seismic damper if precautions are made. The numerical investigations indicate that using composite NiTi-wires in a seismic damper enhances the energy dissipation capabilities for a wider working temperature range.