• 제목/요약/키워드: smart learning framework

검색결과 86건 처리시간 0.022초

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

Removing Out - Of - Distribution Samples on Classification Task

  • Dang, Thanh-Vu;Vo, Hoang-Trong;Yu, Gwang-Hyun;Lee, Ju-Hwan;Nguyen, Huy-Toan;Kim, Jin-Young
    • 스마트미디어저널
    • /
    • 제9권3호
    • /
    • pp.80-89
    • /
    • 2020
  • Out - of - distribution (OOD) samples are frequently encountered when deploying a classification model in plenty of real-world machine learning-based applications. Those samples are normally sampling far away from the training distribution, but many classifiers still assign them high reliability to belong to one of the training categories. In this study, we address the problem of removing OOD examples by estimating marginal density estimation using variational autoencoder (VAE). We also investigate other proper methods, such as temperature scaling, Gaussian discrimination analysis, and label smoothing. We use Chonnam National University (CNU) weeds dataset as the in - distribution dataset and CIFAR-10, CalTeach as the OOD datasets. Quantitative results show that the proposed framework can reject the OOD test samples with a suitable threshold.

Self-sufficiencies in Cyber Technologies: A requirement study on Saudi Arabia

  • Alhalafi, Nawaf;Veeraraghavan, Prakash
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.204-214
    • /
    • 2022
  • Speedy development has been witnessed in communication technologies and the adoption of the Internet across the world. Information dissemination is the primary goal of these technologies. One of the rapidly developing nations in the Middle East is Saudi Arabia, where the use of communication technologies, including mobile and Internet, has drastically risen in recent times. These advancements are relatively new to the region when contrasted to developed nations. Thus, offenses arising from the adoption of these technologies may be new to Saudi Arabians. This study examines cyber security awareness among Saudi Arabian citizens in distinct settings. A comparison is made between the cybersecurity policy guidelines adopted in Saudi Arabia and three other nations. This review will explore distinct essential elements and approaches to mitigating cybercrimes in the United States, Singapore, and India. Following an analysis of the current cybersecurity framework in Saudi Arabia, suggestions for improvement are determined from the overall findings. A key objective is enhancing the nationwide focus on efficient safety and security systems. While the participants display a clear knowledge of IT, the surveyed literature shows limited awareness of the risks related to cyber security practices and the role of government in promoting data safety across the Internet. As the findings indicate, proper frameworks regarding cyber security need to be considered to ensure that associated threats are mitigated as Saudi Arabia aspires to become an efficient smart nation.

Deep learning-based post-disaster building inspection with channel-wise attention and semi-supervised learning

  • Wen Tang;Tarutal Ghosh Mondal;Rih-Teng Wu;Abhishek Subedi;Mohammad R. Jahanshahi
    • Smart Structures and Systems
    • /
    • 제31권4호
    • /
    • pp.365-381
    • /
    • 2023
  • The existing vision-based techniques for inspection and condition assessment of civil infrastructure are mostly manual and consequently time-consuming, expensive, subjective, and risky. As a viable alternative, researchers in the past resorted to deep learning-based autonomous damage detection algorithms for expedited post-disaster reconnaissance of structures. Although a number of automatic damage detection algorithms have been proposed, the scarcity of labeled training data remains a major concern. To address this issue, this study proposed a semi-supervised learning (SSL) framework based on consistency regularization and cross-supervision. Image data from post-earthquake reconnaissance, that contains cracks, spalling, and exposed rebars are used to evaluate the proposed solution. Experiments are carried out under different data partition protocols, and it is shown that the proposed SSL method can make use of unlabeled images to enhance the segmentation performance when limited amount of ground truth labels are provided. This study also proposes DeepLab-AASPP and modified versions of U-Net++ based on channel-wise attention mechanism to better segment the components and damage areas from images of reinforced concrete buildings. The channel-wise attention mechanism can effectively improve the performance of the network by dynamically scaling the feature maps so that the networks can focus on more informative feature maps in the concatenation layer. The proposed DeepLab-AASPP achieves the best performance on component segmentation and damage state segmentation tasks with mIoU scores of 0.9850 and 0.7032, respectively. For crack, spalling, and rebar segmentation tasks, modified U-Net++ obtains the best performance with Igou scores (excluding the background pixels) of 0.5449, 0.9375, and 0.5018, respectively. The proposed architectures win the second place in IC-SHM2021 competition in all five tasks of Project 2.

Anomalous Trajectory Detection in Surveillance Systems Using Pedestrian and Surrounding Information

  • Doan, Trung Nghia;Kim, Sunwoong;Vo, Le Cuong;Lee, Hyuk-Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권4호
    • /
    • pp.256-266
    • /
    • 2016
  • Concurrently detected and annotated abnormal events can have a significant impact on surveillance systems. By considering the specific domain of pedestrian trajectories, this paper presents two main contributions. First, as introduced in much of the work on trajectory-based anomaly detection in the literature, only information about pedestrian paths, such as direction and speed, is considered. Differing from previous work, this paper proposes a framework that deals with additional types of trajectory-based anomalies. These abnormal events take places when a person enters prohibited areas. Those restricted regions are constructed by an online learning algorithm that uses surrounding information, including detected pedestrians and background scenes. Second, a simple data-boosting technique is introduced to overcome a lack of training data; such a problem particularly challenges all previous work, owing to the significantly low frequency of abnormal events. This technique only requires normal trajectories and fundamental information about scenes to increase the amount of training data for both normal and abnormal trajectories. With the increased amount of training data, the conventional abnormal trajectory classifier is able to achieve better prediction accuracy without falling into the over-fitting problem caused by complex learning models. Finally, the proposed framework (which annotates tracks that enter prohibited areas) and a conventional abnormal trajectory detector (using the data-boosting technique) are integrated to form a united detector. Such a detector deals with different types of anomalous trajectories in a hierarchical order. The experimental results show that all proposed detectors can effectively detect anomalous trajectories in the test phase.

Smartphone-based structural crack detection using pruned fully convolutional networks and edge computing

  • Ye, X.W.;Li, Z.X.;Jin, T.
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.141-151
    • /
    • 2022
  • In recent years, the industry and research communities have focused on developing autonomous crack inspection approaches, which mainly include image acquisition and crack detection. In these approaches, mobile devices such as cameras, drones or smartphones are utilized as sensing platforms to acquire structural images, and the deep learning (DL)-based methods are being developed as important crack detection approaches. However, the process of image acquisition and collection is time-consuming, which delays the inspection. Also, the present mobile devices such as smartphones can be not only a sensing platform but also a computing platform that can be embedded with deep neural networks (DNNs) to conduct on-site crack detection. Due to the limited computing resources of mobile devices, the size of the DNNs should be reduced to improve the computational efficiency. In this study, an architecture called pruned crack recognition network (PCR-Net) was developed for the detection of structural cracks. A dataset containing 11000 images was established based on the raw images from bridge inspections. A pruning method was introduced to reduce the size of the base architecture for the optimization of the model size. Comparative studies were conducted with image processing techniques (IPTs) and other DNNs for the evaluation of the performance of the proposed PCR-Net. Furthermore, a modularly designed framework that integrated the PCR-Net was developed to realize a DL-based crack detection application for smartphones. Finally, on-site crack detection experiments were carried out to validate the performance of the developed system of smartphone-based detection of structural cracks.

AI-BASED Monitoring Of New Plant Growth Management System Design

  • Seung-Ho Lee;Seung-Jung Shin
    • International journal of advanced smart convergence
    • /
    • 제12권3호
    • /
    • pp.104-108
    • /
    • 2023
  • This paper deals with research on innovative systems using Python-based artificial intelligence technology in the field of plant growth monitoring. The importance of monitoring and analyzing the health status and growth environment of plants in real time contributes to improving the efficiency and quality of crop production. This paper proposes a method of processing and analyzing plant image data using computer vision and deep learning technologies. The system was implemented using Python language and the main deep learning framework, TensorFlow, PyTorch. A camera system that monitors plants in real time acquires image data and provides it as input to a deep neural network model. This model was used to determine the growth state of plants, the presence of pests, and nutritional status. The proposed system provides users with information on plant state changes in real time by providing monitoring results in the form of visual or notification. In addition, it is also used to predict future growth conditions or anomalies by building data analysis and prediction models based on the collected data. This paper is about the design and implementation of Python-based plant growth monitoring systems, data processing and analysis methods, and is expected to contribute to important research areas for improving plant production efficiency and reducing resource consumption.

Evaluation of Recurrent Neural Network Variants for Person Re-identification

  • Le, Cuong Vo;Tuan, Nghia Nguyen;Hong, Quan Nguyen;Lee, Hyuk-Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권3호
    • /
    • pp.193-199
    • /
    • 2017
  • Instead of using only spatial features from a single frame for person re-identification, a combination of spatial and temporal factors boosts the performance of the system. A recurrent neural network (RNN) shows its effectiveness in generating highly discriminative sequence-level human representations. In this work, we implement RNN, three Long Short Term Memory (LSTM) network variants, and Gated Recurrent Unit (GRU) on Caffe deep learning framework, and we then conduct experiments to compare performance in terms of size and accuracy for person re-identification. We propose using GRU for the optimized choice as the experimental results show that the GRU achieves the highest accuracy despite having fewer parameters than the others.

A Survey on Image Emotion Recognition

  • Zhao, Guangzhe;Yang, Hanting;Tu, Bing;Zhang, Lei
    • Journal of Information Processing Systems
    • /
    • 제17권6호
    • /
    • pp.1138-1156
    • /
    • 2021
  • Emotional semantics are the highest level of semantics that can be extracted from an image. Constructing a system that can automatically recognize the emotional semantics from images will be significant for marketing, smart healthcare, and deep human-computer interaction. To understand the direction of image emotion recognition as well as the general research methods, we summarize the current development trends and shed light on potential future research. The primary contributions of this paper are as follows. We investigate the color, texture, shape and contour features used for emotional semantics extraction. We establish two models that map images into emotional space and introduce in detail the various processes in the image emotional semantic recognition framework. We also discuss important datasets and useful applications in the field such as garment image and image retrieval. We conclude with a brief discussion about future research trends.

대용량 분산 Abyss 스토리지의 CDA (Connected Data Architecture) 기반 AI 서비스의 설계 및 활용 (Design and Utilization of Connected Data Architecture-based AI Service of Mass Distributed Abyss Storage)

  • 차병래;박선;서재현;김종원;신병춘
    • 스마트미디어저널
    • /
    • 제10권1호
    • /
    • pp.99-107
    • /
    • 2021
  • 4차 산업혁명, Industry 4.0 과 더불어 최근 ICT 분야의 메가트렌드는 빅데이터, IoT, 클라우드 컴퓨팅, 그리고 인공지능이라고 할 수 있다. 따라서, 4차 산업혁명 시대에 알맞은 AI 서비스들의 기술 개발과 다양한 산업 영역에서 ICT 분야의 융합에 따른 BI (Business Intelligence), IA (Intelligent Analytics, BI + AI), AIoT (Artificial Intelligence of Things), AIOPS (Artificial Intelligence for IT Operations), RPA 2.0 (Robotic Process Automation + AI) 등의 세분화된 기술 발전으로 급속한 디지털 전환 (Digital Transformation)이 진행되고 있는 추세이다. 본 연구에서는 이러한 기술적 상황에 따른 대용량 분산 Abyss 스토리지 기반으로 인프라 측면의 GPU, CDA (Connected Data Architecture) 프레임워크, 그리고 AI의 다양한 머신러닝 서비스들을 통합 및 고도화를 목표로 하며, AI 비즈니스의 수익 모델을 다양한 산업 영역에 활용하고자 한다.