• Title/Summary/Keyword: smart health monitoring

Search Result 691, Processing Time 0.029 seconds

Generation of wind turbine blade surface defect dataset based on StyleGAN3 and PBGMs

  • W.R. Li;W.H. Zhao;T.T. Wang;Y.F. Du
    • Smart Structures and Systems
    • /
    • v.34 no.2
    • /
    • pp.129-143
    • /
    • 2024
  • In recent years, with the vigorous development of visual algorithms, a large amount of research has been conducted on blade surface defect detection methods represented by deep learning. Detection methods based on deep learning models must rely on a large and rich dataset. However, the geographical location and working environment of wind turbines makes it difficult to effectively capture images of blade surface defects, which inevitably hinders visual detection. In response to the challenge of collecting a dataset for surface defects that are difficult to obtain, a multi-class blade surface defect generation method based on the StyleGAN3 (Style Generative Adversarial Networks 3) deep learning model and PBGMs (Physics-Based Graphics Models) method has been proposed. Firstly, a small number of real blade surface defect datasets are trained using the adversarial neural network of the StyleGAN3 deep learning model to generate a large number of high-resolution blade surface defect images. Secondly, the generated images are processed through Matting and Resize operations to create defect foreground images. The blade background images produced using PBGM technology are randomly fused, resulting in a diverse and high-resolution blade surface defect dataset with multiple types of backgrounds. Finally, experimental validation has proven that the adoption of this method can generate images with defect characteristics and high resolution, achieving a proportion of over 98.5%. Additionally, utilizing the EISeg annotation method significantly reduces the annotation time to just 1/7 of the time required for traditional methods. These generated images and annotated data of blade surface defects provide robust support for the detection of blade surface defects.

A Secure and Lightweight Authentication Scheme for Ambient Assisted Living Systems (전천 후 생활보조 시스템을 위한 안전하고 경량화 된 인증기법)

  • Yi, Myung-Kyu;Choi, Hyunchul;Whangbo, Taeg-Keun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.77-83
    • /
    • 2019
  • With the increase in population, the number of such senior citizens is increasing day by day. These senior citizens have a variety of care needs, but there are not enough health workers to look after them. Ambient Assisted Living (AAL) aims at ensuring the safety and health quality of the older adults and extending the number of years the senior citizens can live independently in an environment of their own preference. AAL provides a system comprising of smart devices, medical sensors, wireless networks, computer and software applications for healthcare monitoring. AAL can be used for various purposes like preventing, curing, and improving wellness and health conditions of older adults. While information security and privacy are critical to providing assurance that users of AAL systems are protected, few studies take into account this feature. In this paper, we propose a secure and lightweight authentication scheme for the AAL systems. The proposed authentication scheme not only supports several important security requirements needed by the AAL systems, but can also withstand various types of attacks. Also, the security analysis results are presented to show the proposed authentication scheme is more secure and efficient rather than existing authentication schemes.

Total reference-free displacements for condition assessment of timber railroad bridges using tilt

  • Ozdagli, Ali I.;Gomez, Jose A.;Moreu, Fernando
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.549-562
    • /
    • 2017
  • The US railroad network carries 40% of the nation's total freight. Railroad bridges are the most critical part of the network infrastructure and, therefore, must be properly maintained for the operational safety. Railroad managers inspect bridges by measuring displacements under train crossing events to assess their structural condition and prioritize bridge management and safety decisions accordingly. The displacement of a railroad bridge under train crossings is one parameter of interest to railroad bridge owners, as it quantifies a bridge's ability to perform safely and addresses its serviceability. Railroad bridges with poor track conditions will have amplified displacements under heavy loads due to impacts between the wheels and rail joints. Under these circumstances, vehicle-track-bridge interactions could cause excessive bridge displacements, and hence, unsafe train crossings. If displacements during train crossings could be measured objectively, owners could repair or replace less safe bridges first. However, data on bridge displacements is difficult to collect in the field as a fixed point of reference is required for measurement. Accelerations can be used to estimate dynamic displacements, but to date, the pseudo-static displacements cannot be measured using reference-free sensors. This study proposes a method to estimate total transverse displacements of a railroad bridge under live train loads using acceleration and tilt data at the top of the exterior pile bent of a standard timber trestle, where train derailment due to excessive lateral movement is the main concern. Researchers used real bridge transverse displacement data under train traffic from varying bridge serviceability levels. This study explores the design of a new bridge deck-pier experimental model that simulates the vibrations of railroad bridges under traffic using a shake table for the input of train crossing data collected from the field into a laboratory model of a standard timber railroad pile bent. Reference-free sensors measured both the inclination angle and accelerations of the pile cap. Various readings are used to estimate the total displacements of the bridge using data filtering. The estimated displacements are then compared to the true responses of the model measured with displacement sensors. An average peak error of 10% and a root mean square error average of 5% resulted, concluding that this method can cost-effectively measure the total displacement of railroad bridges without a fixed reference.

A Study on the Smart Elderly Support System in response to the New Virus Disease (신종 바이러스에 대응하는 스마트 고령자지원 시스템의 연구)

  • Myeon-Gyun Cho
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.175-185
    • /
    • 2023
  • Recently, novel viral infections such as COVID-19 have spread and pose a serious public health problem. In particular, these diseases have a fatal effect on the elderly, threatening life and causing serious social and economic losses. Accordingly, applications such as telemedicine, healthcare, and disease prevention using the Internet of Things (IoT) and artificial intelligence (AI) have been introduced in many industries to improve disease detection, monitoring, and quarantine performance. However, since existing technologies are not applied quickly and comprehensively to the sudden emergence of infectious diseases, they have not been able to prevent large-scale infection and the nationwide spread of infectious diseases in society. Therefore, in this paper, we try to predict the spread of infection by collecting various infection information with regional limitations through a virus disease information collector and performing AI analysis and severity matching through an AI broker. Finally, through the Korea Centers for Disease Control and Prevention, danger alerts are issued to the elderly, messages are sent to block the spread, and information on evacuation from infected areas is quickly provided. A realistic elderly support system compares the location information of the elderly with the information of the infected area and provides an intuitive danger area (infected area) avoidance function with an augmented reality-based smartphone application. When the elderly visit an infected area is confirmed, quarantine management services are provided automatically. In the future, the proposed system can be used as a method of preventing a crushing accident due to sudden crowd concentration in advance by identifying the location-based user density.

Feasibility Study on Packaged FBG Sensors for Debonding Monitoring of Composite Wind Turbine Blade (풍력발전기 복합재 블레이드의 접착 분리 모니터링을 위한 패키징 광섬유 브래그 격자 센서 탐촉자의 사용성 검토)

  • Kwon, Il-Bum;Choi, Ki-Sun;Kim, Geun-Jin;Kim, Dong-Jin;Huh, Yong-Hak;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.382-390
    • /
    • 2011
  • Smart sensors embedable in composite wind turbine blades have been required to be researched for monitoring the health status of large wind turbine blades during real-time operation. In this research, the feasibility of packaged FBG sensor probes was studied through the experiments of composite blade trailing edge specimens in order to detect cracking and debonding damages. The instants of cracking and debonding generated in the shear web were confirmed by rapid changes of the wavelength shifts from the bare FBG sensor probes. Packaged FBG sensor probes were proposed to remove the fragile property of bare FBG sensor probes attached on composite wind blade specimens. Strain and temperature sensitivity of fabricated probes installed on the skin of blade specimen were almost equal to those of a bare FBG sensor. Strain sensitivity was measured to be ${\mu}{\varepsilon}$/pm in a strain range from to 0 to 600 ${\mu}{\varepsilon}$, and the calculated temperature sensitivity was to be 48 pm/$^{\circ}C$ in the heating test up to 80 degree.

Packaging Technology for the Optical Fiber Bragg Grating Multiplexed Sensors (광섬유 브래그 격자 다중화 센서 패키징 기술에 관한 연구)

  • Lee, Sang Mae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.23-29
    • /
    • 2017
  • The packaged optical fiber Bragg grating sensors which were networked by multiplexing the Bragg grating sensors with WDM technology were investigated in application for the structural health monitoring of the marine trestle structure transporting the ship. The optical fiber Bragg grating sensor was packaged in a cylindrical shape made of aluminum tubes. Furthermore, after the packaged optical fiber sensor was inserted in polymeric tube, the epoxy was filled inside the tube so that the sensor has resistance and durability against sea water. The packaged optical fiber sensor component was investigated under 0.2 MPa of hydraulic pressure and was found to be robust. The number and location of Bragg gratings attached at the trestle were determined where the trestle was subject to high displacement obtained by the finite element simulation. Strain of the part in the trestle being subjected to the maximum load was analyzed to be ${\sim}1000{\mu}{\varepsilon}$ and thus shift in Bragg wavelength of the sensor caused by the maximum load of the trestle was found to be ~1,200 pm. According to results of the finite element analysis, the Bragg wavelength spacings of the sensors were determined to have 3~5 nm without overlapping of grating wavelengths between sensors when the trestle was under loads and thus 50 of the grating sensors with each module consisting of 5 sensors could be networked within 150 nm optical window at 1550 nm wavelength of the Bragg wavelength interrogator. Shifts in Bragg wavelength of the 5 packaged optical fiber sensors attached at the mock trestle unit were well interrogated by the grating interrogator which used the optical fiber loop mirror, and the maximum strain rate was measured to be about $235.650{\mu}{\varepsilon}$. The modelling result of the sensor packaging and networking was in good agreements with experimental result each other.

Seismic safety assessment of eynel highway steel bridge using ambient vibration measurements

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Ozdemir, Hasan
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-154
    • /
    • 2012
  • In this paper, it is aimed to determine the seismic behaviour of highway bridges by nondestructive testing using ambient vibration measurements. Eynel Highway Bridge which has arch type structural system with a total length of 216 m and located in the Ayvaclk county of Samsun, Turkey is selected as an application. The bridge connects the villages which are separated with Suat U$\breve{g}$urlu Dam Lake. A three dimensional finite element model is first established for a highway bridge using project drawings and an analytical modal analysis is then performed to generate natural frequencies and mode shapes in the three orthogonal directions. The ambient vibration measurements are carried out on the bridge deck under natural excitation such as traffic, human walking and wind loads using Operational Modal Analysis. Sensitive seismic accelerometers are used to collect signals obtained from the experimental tests. To obtain experimental dynamic characteristics, two output-only system identification techniques are employed namely, Enhanced Frequency Domain Decomposition technique in the frequency domain and Stochastic Subspace Identification technique in time domain. Analytical and experimental dynamic characteristic are compared with each other and finite element model of the bridge is updated by changing of boundary conditions to reduce the differences between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of highway bridges. After finite element model updating, maximum differences between the natural frequencies are reduced averagely from 23% to 3%. The updated finite element model reflects the dynamic characteristics of the bridge better, and it can be used to predict the dynamic response under complex external forces. It is also helpful for further damage identification and health condition monitoring. Analytical model of the bridge before and after model updating is analyzed using 1992 Erzincan earthquake record to determine the seismic behaviour. It can be seen from the analysis results that displacements increase by the height of bridge columns and along to middle point of the deck and main arches. Bending moments have an increasing trend along to first and last 50 m and have a decreasing trend long to the middle of the main arches.

Development of Ubiquitous Sensor Network Intelligent Bridge System (유비쿼터스 센서 네트워크 기반 지능형 교량 시스템 개발)

  • Jo, Byung Wan;Park, Jung Hoon;Yoon, Kwang Won;Kim, Heoun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.120-130
    • /
    • 2012
  • As long span and complex bridges are constructed often recently, safety estimation became a big issue. Various types of measuring instruments are installed in case of long span bridge. New wireless technologies for long span bridges such as sending information through a gateway at the field or sending it through cables by signal processing the sensing data are applied these days. However, The case of occurred accidents related to bridge in the world have been reported that serious accidents occur due to lack of real-time proactive, intelligent action based on recognition accidents. To solve this problem in this study, the idea of "communication among things", which is the basic method of RFID/USN technology, is applied to the bridge monitoring system. A sensor node module for USN based intelligent bridge system in which sensor are utilized on the bridge and communicates interactively to prevent accidents when it captures the alert signals and urgent events, sends RF wireless signal to the nearest traffic signal to block the traffic and prevent massive accidents, is designed and tested by performing TinyOS based middleware design and sensor test free Space trans-receiving distance.

Common Services Platform for M2M Supporting Security Standards (보안 표준 지원 M2M 공통 서비스 플랫폼)

  • Vakkosov, Sardorjon;Namgung, Jung-Il;Park, Soo-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.76-88
    • /
    • 2016
  • Machine to Machine (M2M) is a technology that presents communication between two or more devices with or without human intervention. M2M communications can be applied for various use cases such as environmental monitoring, health care, smart metering and etc. In most use cases, M2M utilizes sensor nodes to collect data from the intended environment and the data is transmitted back to M2M application through other devices (gateways, sink nodes). In some use cases, M2M devices are being designed to store and process sensor data for improving the reliability of the service; Gateways and sink nodes are also intended to store and process the gathered data from sensor nodes. This kind of approach is very challenging for both academy and industry. In order to enhance the performance of this approach, in this paper, we propose our Common Service Security Platform (CSSP) for M2M devices and gateways. CSSP platform presents solutions for the devices and gateways by making them operate more accurately and efficiently. Besides, we present a comparative analysis of communication protocols and present their performance in accordance with selected metrics.

Comparison of the Awareness of Garden Functions (정원 기능에 대한 인식 비교)

  • Park, Mi-Ok;Choi, Ja-Ho;Koo, Bon-Hak
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.2
    • /
    • pp.34-44
    • /
    • 2020
  • The purpose of this study was to investigate the difference in perceptions between gardens and park functions as recognized by two groups, Group A and Group B, in order to confirm the distinction between concepts and functions and then establish the importance of individual functions. The AHP was used to analyze the importance of each group's perceptions by dividing them into garden and park, Group A and non-Group A, respectively. In Group A, the importance of garden functions were considered in descending order of importance to be cultural function, ecological function, and social function. In the general group, ecological function, cultural function, and social function also appeared, but in a different order of importance. As for the park functions, Group A recognized the importance of functions in a similar order of importance to the gardens: cultural function, ecological function, and social function. Group B thought that social function, ecological function, and cultural function have the same significance. At the major classification level, Group A and Group B emphasized the social function of the parks. Group A recognized the importance of the garden's cultural function as the most important, whereas the general group emphasized the importance of the garden's ecological function. As for the mid-class level, Group A recognized the aesthetic beauty, health, ecological environment protection, and water circulation as important functions of the garden. For Group B, the ecological environment protection, aesthetic beauty, water cycle, and health were important. The concepts and functions of gardens and parks are still largely mixed but are gradually becoming differentiated. As a follow-up study, it is important to systematically manage the functions of gardens by establishing design, construction, and monitoring DB techniques for the garden type and examine the hierarchy of various other gardens.