• 제목/요약/키워드: smart glass material

검색결과 40건 처리시간 0.021초

FEM과 AE를 이용한 지적복합재료의 기계적특성 평가 (Evaluation on Mechanical Properties of a Smart Composite Using the finite Element Method and the Acoustic Emission Technique)

  • 박영철;이진경
    • 비파괴검사학회지
    • /
    • 제24권3호
    • /
    • pp.233-239
    • /
    • 2004
  • 지능재료는 안경테, 치아 교정과 같은 의료용 재료, 각종 센서 및 밸브 등의 광범위한 분야에서 적용되고 있다. 이와 같은 지적재료의 형상기억효과를 이용한 지적복합재료는 항공기의 부품, 산업구조물 및 항공산업에서도 그들 시스템의 모니터링을 위하여 사용되어 질 수 있다. 그러나 지능복합재료의 형상기억효과에 대한 분석과 시뮬레이션은 대단히 어렵다. 본 연구에서는 유한요소법을 이용하여 기지재와 하나의 강화섬유에 대한 2차원의 축 대칭 모델에 대하여 분석하였다. 상온(293K)과 고온(363K)에서 각각 해석되었으며 해석결과와 실험결과와의 강도 값을 비교 검토하였다. 더불어 음향방출 기법을 이용하여 지능복합재료(TiNi/A16061)의 예변형률과 고온에서의 미시적 손상거동을 평가하였다.

스마트윈도우 응용을 위한 FTO 기판 위에 증착된 VO2 박막의 광학적 특성 (Optical Properties of VO2 Thin Film Deposited on F:SnO2 Substrate for Smart Window Application)

  • 강소희;한승호;박승준;김형근;양우석
    • 한국재료학회지
    • /
    • 제23권4호
    • /
    • pp.215-218
    • /
    • 2013
  • Vanadium dioxide ($VO_2$) is an attractive material for smart window applications where the transmittance of light can be automatically modulated from a transparent state to an opaque state at the critical temperature of ${\sim}68^{\circ}C$. Meanwhile, F : $SnO_2$ (F-doped $SnO_2$, FTO) glass is a transparent conductive oxide material that is widely used in solar-energy-related applications because of its excellent optical and electrical properties. Relatively high transmittance and low emissivity have been obtained for FTO-coated glasses. Tunable transmittance corresponding to ambient temperature and low emissivity can be expected from $VO_2$ films deposited onto FTO glasses. In this study, FTO glasses were applied for the deposition of $VO_2$ thin films by pulsed DC magnetron sputtering. $VO_2$ thin films were also deposited on a Pyrex substrate for comparison. To decrease the phase transition temperature of $VO_2$, tungsten-doped $VO_2$ films were also deposited onto FTO glasses. The visible transmittance of $VO_2$/FTO was higher than that of $VO_2$/pyrex due to the increased crystallinity of the $VO_2$ thin film deposited on FTO and decreased interface reflection. Although the solar transmittance modulation of $VO_2$/FTO was lower than that of $VO_2$/pyrex, room temperature solar transmittance of $VO_2$/FTO was lower than that of $VO_2$/pyrex, which is advantageous for reflecting solar heat energy in summer.

자동차 글라스 조립 자동화설비를 위한 FPGA기반 실러 도포검사 비전시스템 개발 (Development of an FPGA-based Sealer Coating Inspection Vision System for Automotive Glass Assembly Automation Equipment)

  • 김주영;박재률
    • 센서학회지
    • /
    • 제32권5호
    • /
    • pp.320-327
    • /
    • 2023
  • In this study, an FPGA-based sealer inspection system was developed to inspect the sealer applied to install vehicle glass on a car body. The sealer is a liquid or paste-like material that promotes adhesion such as sealing and waterproofing for mounting and assembling vehicle parts to a car body. The system installed in the existing vehicle design parts line does not detect the sealer in the glass rotation section and takes a long time to process. This study developed a line laser camera sensor and an FPGA vision signal processing module to solve this problem. The line laser camera sensor was developed such that the resolution and speed of the camera for data acquisition could be modified according to the irradiation angle of the laser. Furthermore, it was developed considering the mountability of the entire system to prevent interference with the sealer ejection machine. In addition, a vision signal processing module was developed using the Zynq-7020 FPGA chip to improve the processing speed of the algorithm that converted the profile to the sealer shape image acquired from a 2D camera and calculated the width and height of the sealer using the converted profile. The performance of the developed sealer application inspection system was verified by establishing an experimental environment identical to that of an actual automobile production line. The experimental results confirmed the performance of the sealer application inspection at a level that satisfied the requirements of automotive field standards.

Study on the Defects Detection in Composites by Using Optical Position and Infrared Thermography

  • Kwon, Koo-Ahn;Park, Hee-Sang;Choi, Man-Yong;Park, Jeong-Hak;Choi, Won Jae
    • 비파괴검사학회지
    • /
    • 제36권2호
    • /
    • pp.130-137
    • /
    • 2016
  • Non-destructive testing methods for composite materials (e.g., carbon fiber-reinforced and glass fiber-reinforced plastic) have been widely used to detect damage in the overall industry. This study detects defects using optical infrared thermography. The transient heat transport in a solid body is characterized by two dynamic quantities, namely, thermal diffusivity and thermal effusivity. The first quantity describes the speed with thermal energy diffuses through a material, whereas the second one represents a type of thermal inertia. The defect detection rate is increased by utilizing a lock-in method and performing a comparison of the defect detection rates. The comparison is conducted by dividing the irradiation method into reflection and transmission methods and the irradiation time into 50 mHz and 100 mHz. The experimental results show that detecting defects at 50 mHz is easy using the transmission method. This result implies that low-frequency thermal waves penetrate a material deeper than the high-frequency waves.

λ/2 Retardation Film을 이용한 3단계 투과율 가변 스마트윈도우 제작 (Fabrication of 3-Step Light Transmittance-variable Smart Windows based on λ/2 Retardation Film)

  • 김일구;양호창;박영민;서요한;홍영규;이승현
    • 마이크로전자및패키징학회지
    • /
    • 제30권3호
    • /
    • pp.78-82
    • /
    • 2023
  • 본 연구에서는 Reactive mesogen (RM) 기반 λ/2 위상지연 필름과 편광필름을 이용하여 3단계로 투과율 가변이 가능한 스마트윈도우 제조 기술을 제안한다. λ/2 위상지연 필름은 위상차 (Γ) 값이 π (Δn·d=λ/2)이며, 위상지연 필름에 입사된 빛의 진행방향을 필름의 광축에 대칭된 각도로 변환시키는 특징이 있다. 위상지연 필름의 Δn·d 값이 λ/2에 근접할수록 변환 특성이 우수하기 때문에 본 연구에서는 복굴절 물질인 RM 두께별 retardation (Δn·d) 특성 평가를 통해 Δn·d가 λ/2(=275 nm@550 nm)에 근접한 276.1 nm의 값을 갖는 위상지연 필름을 제작하였다. 최종적으로 (편광필름)/(유리기판)/(배향막)/(λ/2 retardation film) 구조의 스마트윈도우를 제작하여 투과모드, 반투과모드, 차단모드에서의 광 투과 특성을 평가하였다. 평가결과 투과율은 각각 35.8%, 27.8%, 18.2%의 값을 나타내었으며, 이를 통해 λ/2 위상지연 필름을 이용하여 3단계로 투과율 제어 가능함을 확인하였다. 또한 150×200 mm2 크기의 스마트윈도우를 구현함으로써 건축물, 자동차 등 다양한 분야의 활용 가능성을 확인하였다.

Seismic and vibration tests for assessing the effectiveness of GFRP for retrofitting masonry structures

  • Michelis, Paul;Papadimitriou, Costas;Karaiskos, Grigoris K.;Papadioti, Dimitra-Christina;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • 제9권3호
    • /
    • pp.207-230
    • /
    • 2012
  • Full-scale shake table seismic experiments and low-amplitude vibration tests on a masonry building are carried out to assess its seismic performance as well as study the effectiveness of a new multifunctional textile material for retrofitting masonry structures against earthquakes. The un-reinforced and the retrofitted with glass fiber reinforced polymer (GFRP) strips masonry building was subjected to a series of earthquake excitations of increasing magnitude in order to progressively induce various small, moderate and severe levels of damage to the masonry walls. The performance of the original and retrofitted building states is evaluated. Changes in the dynamic characteristics (lowest four modal frequencies and damping ratios) of the building are used to assess and quantify the damage states of the masonry walls. For this, the dynamic modal characteristics of the structure states after each earthquake event were estimated by performing low-amplitude impulse hammer and sine-sweep forced vibration tests. Comparisons between the modal results calculated using traditional accelerometers and those using Fiber Bragg Grating (FBG) sensors embedded in the reinforcing textile were carried on to investigate the reliability and accuracy of FBG sensors in tracking the dynamic behaviour of the building. The retrofitting actions restored the stiffness characteristics of the reinforced masonry structure to the levels of the original undamaged un-reinforced structure. The results show that despite a similar dynamic behavior identified, corresponding to reduction of the modal frequencies, the un-reinforced masonry building was severely damaged, while the reinforced masonry building was able to withstand, without visual damage, the induced strong seismic excitations. The applied GFRP reinforcement architecture for one storey buildings was experimentally proven reliable for the most severe earthquake accelerations. It was easily placed in a short time and it is a cost effective solution (covering only 20% of the external wall surfaces) when compared to the cost for full wall coverage by GFRPs.

A review on pavement porous concrete using recycled waste materials

  • Toghroli, Ali;Shariati, Mahdi;Sajedi, Fathollah;Ibrahim, Zainah;Koting, Suhana;Mohamad, Edy Tonnizam;Khorami, Majid
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.433-440
    • /
    • 2018
  • Pavements porous concrete is a noble structure design in the urban management development generally enabling water to be permeated within its structure. It has also capable in the same time to cater dynamic loading. During the technology development, the quality and quantity of waste materials have led to a waste disposal crisis. Using recycled materials (secondary) instead of virgin ones (primary) have reduced landfill pressure and extraction demanding. This study has reviewed the waste materials (Recycled crushed glass (RCG), Steel slag, Steel fiber, Tires, Plastics, Recycled asphalt) used in the pavement porous concretes and report their respective mechanical, durability and permeability functions. Waste material usage in the partial cement replacement will cause the concrete production cost to be reduced; also, the concretes' mechanical features have slightly affected to eliminate the disposal waste materials defects and to use cement in Portland cement (PC) production. While the cement has been replaced by different industrial wastes, the compressive strength, flexural strength, split tensile strength and different PC permeability mixes have depended on the waste materials' type applied in PC production.

Modelling of the interfacial damping due to nanotube agglomerations in nanocomposites

  • Jarali, Chetan S.;Madhusudan, M.;Vidyashankar, S.;Lu, Y. Charles
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.57-66
    • /
    • 2017
  • Nanocomposites reinforced with carbon nanotube fibers exhibit greater stiffness, strength and damping properties in comparison to conventional composites reinforced with carbon/glass fibers. Consequently, most of the nanocomposite research is focused in understanding the dynamic characteristics, which are highly useful in applications such as vibration control and energy harvesting. It has been observed that those nanocomposites show better stiffness when the geometry of nanotubes is straight as compared to curvilinear although nanotube agglomeration may exist. In this work the damping behavior of the nanocomposite is characterized in terms of loss factor under the presence of nanotube agglomerations. A micro stick-slip damping model is used to compute the damping properties of the nanocomposites with multiwall carbon nanotubes. The present formulation considers the slippage between the interface of the matrix and the nanotubes as well as the slippage between the interlayers in the nanotubes. The nanotube agglomerations model is also presented. Results are computed based on the loss factor expressed in terms of strain amplitude and nanotube agglomerations. The results show that although-among the various factors such as the material properties (moduli of nanotubes and polymer matrix) and the geometric properties (number of nanotubes, volume fraction of nanotubes, and critical interfacial shear stresses), the agglomeration of nanotubes significantly influences the damping properties of the nanocomposites. Therefore the full potential of nanocomposites to be used for damping applications needs to be analyzed under the influence of nanotube agglomerations.

브러쉬 코팅 공정을 이용한 용액 기반 BiAlO 박막의 제작과 액정 소자에의 응용 (Fabrication of the Solution-Derived BiAlO Thin Film by Using Brush Coating Process for Liquid Crystal Device)

  • 이주환;김대현
    • 한국전기전자재료학회논문지
    • /
    • 제34권5호
    • /
    • pp.321-326
    • /
    • 2021
  • We fabricated BiAlO thin film by a solution process with a brush coating to be used as liquid crystal (LC) alignment layer. Solution-processed BiAlO was coated on the glass substrate by brush process. Prepared thin films were annealed at different temperatures of 80℃, 180℃, and 280℃. To verify whether the BiAlO film was formed properly, X-ray photoelectron spectroscopy analysis was performed on Bi and Al. Using a crystal rotation method by polarized optical microscopy, LC alignment state was evaluated. At the annealing temperature of 280℃, the uniform homogenous LC alignment was achieved. To reveal the mechanism of LC alignment by brush coating, field emission scanning electron microscope was used. Through this analysis, spin-coated and brush coated film surface were compared. It was revealed that physical anisotropy was induced by brush coating at a high annealing temperature. Particles were aligned in one direction along which brush coating was made, resulting in a physical anisotropy that affects a uniform LC alignment. Therefore, it was confirmed that brush coating combined with BiAlO thin film annealed at high temperature has a significant potential for LC alignment.

플라즈몬 금속 산화물 나노입자를 활용한 차세대 전기변색 소자 개발 동향 (Recent Progress of Developing Next-Generation Electrochromic Windows from Plasmonic Metal Oxide Nanocrystals)

  • 나장한;김성빈;허성연
    • 한국전기전자재료학회논문지
    • /
    • 제37권1호
    • /
    • pp.1-10
    • /
    • 2024
  • Direct use of sunlight through the glass windows is an efficient way to reduce the energy consumption related to the heating, cooling, and lighting. Introduction of near-infrared modulating properties through colloidal doped metal oxide nanocrystals into the classical electrochromic materials accelerates the development of next-generation electrochromic devices. There has been a steady enhancement in the performance of electrochromic devices, necessitating a review of the recent progress in next-generation electrochromic devices employing doped metal oxide nanocrystals. This review provides an overview of the current developments in next-generation electrochromic smart windows utilizing colloidal doped metal oxide nanocrystals, with a focus on the key factors for achieving these advanced windows. Colloidal doped metal oxide nanocrystals are a crucial component in realizing and bringing to market the next generation of electrochromic windows, though further research and development are still required in this regard.