Browse > Article
http://dx.doi.org/10.12989/sss.2017.19.1.057

Modelling of the interfacial damping due to nanotube agglomerations in nanocomposites  

Jarali, Chetan S. (Structural Technologies Division, CSIR National Aerospace Laboratories)
Madhusudan, M. (Research Centre, Visvesvaraya Technological University)
Vidyashankar, S. (Department of Mechanical Engineering, Bangalore Institute of Technology)
Lu, Y. Charles (Department of Mechanical Engineering, University of Kentucky)
Publication Information
Smart Structures and Systems / v.19, no.1, 2017 , pp. 57-66 More about this Journal
Abstract
Nanocomposites reinforced with carbon nanotube fibers exhibit greater stiffness, strength and damping properties in comparison to conventional composites reinforced with carbon/glass fibers. Consequently, most of the nanocomposite research is focused in understanding the dynamic characteristics, which are highly useful in applications such as vibration control and energy harvesting. It has been observed that those nanocomposites show better stiffness when the geometry of nanotubes is straight as compared to curvilinear although nanotube agglomeration may exist. In this work the damping behavior of the nanocomposite is characterized in terms of loss factor under the presence of nanotube agglomerations. A micro stick-slip damping model is used to compute the damping properties of the nanocomposites with multiwall carbon nanotubes. The present formulation considers the slippage between the interface of the matrix and the nanotubes as well as the slippage between the interlayers in the nanotubes. The nanotube agglomerations model is also presented. Results are computed based on the loss factor expressed in terms of strain amplitude and nanotube agglomerations. The results show that although-among the various factors such as the material properties (moduli of nanotubes and polymer matrix) and the geometric properties (number of nanotubes, volume fraction of nanotubes, and critical interfacial shear stresses), the agglomeration of nanotubes significantly influences the damping properties of the nanocomposites. Therefore the full potential of nanocomposites to be used for damping applications needs to be analyzed under the influence of nanotube agglomerations.
Keywords
numerical material modeling; nanocomposites; damping; hysteresis; agglomeration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 ASTM E756-05 (2010), Standard Test Methods for Measuring Vibration Damping Properties of Materials, Building Standards.
2 Ajayan, P.M., Suhr, J. and Koratkar, N. (2006), "Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping", J. Mater. Sci., 41(23), 7824-7829.   DOI
3 Arash, M., Jafar, J., Alireza, K., Tcharkhtchi, A. and Mohajeri, A. (2010), "Mechanical properties of multi-walled carbon nanotube/epoxy composites", Mater. Design, 31(9), 4202-4208.   DOI
4 Buldum, A. and Lu, J.P. (1999), "Atomic scale sliding and rolling of carbon nanotubes", Phys. Rev. Lett., 83, 5050-5053.   DOI
5 Brackbill, C.R., Lesieutre, G.A., Smith, E.C. and Ruhl, L.E. (2000). "Characterization and modeling of the low strain amplitude and frequency dependent behavior of elastomeric damper materials", J. Am. Helicopter Soc., 45(1), 34-42.   DOI
6 Deng, C.F., Wang, D.Z., Zhang, X.X. and Ma, Y.X. (2007), "Damping characteristics of carbon nanotube reinforced aluminum composite", Mater. Lett., 61(14-15), 3229-3231.   DOI
7 Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Design, 28(9), 2394-2401.   DOI
8 Fereidoon, A., Kordani, N., Ahangari, M.G. and Ashoory, M. (2010), "Damping augmentation of epoxy using carbon nanotubes", Int. J. Polym. Mater., 60(1), 11-26.   DOI
9 Gou, J., Minaie, B., Wang, B., Liang, Z. and Zhang, C. (2004), "Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites", Comp. Mater. Sci., 31(3-4), 225-236.   DOI
10 Geng, Y., Liu, M.Y., Li, J., Shi, X.M. and Kim, J.K. (2008), "Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites", Compos. Part A-Appl. S., 39(12), 1876-1883.   DOI
11 Jarali, C.S., Patil, S.F. and Pilli, S.C. (2013), "Hygro-thermoelectric properties of CNT nanocomposites with agglomeration effects. mechanics of advanced materials and structures", (DOI 10.1080/15376494.2013.769654).   DOI
12 Koratkar, N.A., Suhr, J., Joshi, A. et al. (2005), "Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites", Appl. Phys. Lett., 87(6), 063102.   DOI
13 Jarali, C.S., Basavaraddi, S.R., Bjorn, K., Pilli, S.C. and Lu, Y.C. (2014), "Modelling of the effective elastic properties of multifunctional CNT nanocomposites due to agglomeration of straight circular CNT fibers in a polymer matrix", J. Appl. Mech. -T ASME, 81, 021010-1-021010-11. (Doi: 10.1115/1.4024414).
14 Jarali, C.S., Patil, S.F., Pilli, S.C., Raja, S. and Karjinni, V.V. (2015), "Modelling the hygro-thermo-mechanical agglomeration relations of carbon-epoxy hybrid nNanocomposites", J. Multiscale Comput. Eng., 13(3), 231-248.   DOI
15 Koratkar, N., Wei, B.Q. and Ajayan, P.M. (2002), "Carbon nanotube films for damping applications", Adv. Mater., 14(13-14), 997-1000.   DOI
16 Kireitseu, M., Hui, D. and Tomlinson, G. (2008), "Advanced shock-resistant and vibration damping of nanoparticlereinforced composite material", Compos. Part B-Eng., 39(1), 128-138.   DOI
17 Khan, S.U., Li, C.Y., Siddiqui, N.A. and Kim, J.K. (2011), "Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes", Compos. Sci. Technol., 71(12), 1486-1494.   DOI
18 Liu, A., Huang, J.H., Wang, K.W. and Bakis, C.E. (2006), "Effects of interfacial friction on the damping characteristics of composites containing randomly oriented carbon nanotube ropes", J. Intel. Mat. Syst. Str., 17(3), 217-229.   DOI
19 Lindler, J.E. and Wereley, N.M. (1999), "Double adjustable shock absorbers using electro-rheological fluid", J. Intel. Mat. Syst. Str., 10(8), 652-657.   DOI
20 Li, C. and Chou, T.W. (2003), "Elastic moduli of multi-walled carbon nanotubes and the effect of van der waals forces", Compos. Sci. Technol., 63(11), 1517-1524.   DOI
21 Rajoria, H. and Jalili, N. (2005), "Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites", Compos. Sci. Technol., 65(14), 2079-2093.   DOI
22 Liu, A., Wang, K.W. and Bakis, C.E. (2010), "Multiscale damping model for polymeric composites containing carbon nanotube ropes", J. Compos. Mater., 44, 2301-2323.   DOI
23 Lin, R.M. and Lu, C. (2010), "Modeling of interfacial friction damping of carbon nanotube-based nanocomposites", Mech. Syst. Signal Pr., 24(8), 2996-3012.   DOI
24 Paradise, M. and Goswami, T. (2007), "Carbon nanotubes-production and industrial applications", Mater. Design, 28(5), 1477-1489.   DOI
25 Sun, C.T. and Lu, Y.P. (1995), Vibration damping of structural elements, Prentice Hall.
26 Salvetat-Delmotte, J.P. and Rubio, A. (2002), "Mechanical properties of carbon nanotubes: A fiber digest for beginners", Carbon, 40(10), 1729-1734.   DOI
27 Yu, M.F., Yakobson, B.I. and Ruoff, R.S. (2000), "Controlled sliding and pullout of nested shells in individual multi walled carbon nanotubes", J. Phys. Chem. B., 104(37), 8764-8767.   DOI
28 Suhr, J. and Koratkar, N. (2008), "Energy dissipation in carbon nanotube composites: A review", J. Mater. Sci., 43(13), 4370-4382.   DOI
29 Wetzel, B., Rosso, P., Haupert, F. and Friedrich, K. (2006), "Epoxy nanocomposites-fracture and toughening mechanisms", Eng. Fract. Mech., 73(16), 2375-2398.   DOI
30 Xu, X., Thwe, M.M., Shearwood, C. and Liao, K. (2002), "Mechanical properties and interfacial characteristics of carbonnanotube-reinforced epoxy thin films", Appl. Phys. Lett., 81, 2833.   DOI
31 Zhou, X., Shin, E., Wang, K.W. and Bakis, C.E. (2004), "Interfacial damping characteristics of carbon nanotube-based composites", Compos. Sci. Technol., 64(15), 2425-2437.   DOI