Purpose: The purpose of this study is to confirm the strategic direction of the firm regarding the capabilities of the organization and its employees in order to increase the utilization and business performance of employees by that introduce smart factories in the domestic manufacturing industry. Research design, data, and methodology: This study derived a structured research model to confirm the mediating effect of recognition responses between the quality characteristics of smart factories and dynamic capabilities. For the analysis, a total of 143 valid questionnaires were used for 200 companies that introduced smart factories from domestic SME's. Results: Quality Characteristics of Smart Factory and Dynamic Capabilities had a statistically significant effect on Usefulness. Recognition Response had a statistically mediating on the relationship between quality characteristics of smart factory and business performance. Recognition Response had a statistically significant effect on business performance. Conclusions: It suggests that firms introducing smart factory reflect them in their empowerment strategic because the recognition responses of its employees differ according to the quality characteristics and dynamic capabilities of smart factories. It also means that the information derived from the smart factory system is useful and effective to business performance and employees.
Purpose: This paper aims to propose a practical strategy for smart factories and a step-by-step quality strategy according to the maturity of smart factory construction. Methods: The characteristics, compositional requirements, and diagnosis system are examined for smart factories through theoretical considerations. Several cases of implementing smart factory are studied considering the company maturity level from the aspect of the smartness concept. And specific quality techniques and innovation activities are carefully reviewed. Results: The maturity level of smart factory was classified into five phases: 1) ICT non-application, 2) basic, 3) intermediate 1, 4) intermediate 2, 5) advanced level. A five-step quality strategy was established on the basis of case studies; identify, measure, analyze, optimize, and customize. Some quality techniques are introduced for step-by-step implementation of quality strategies. Conclusion: To build a successful smart factory, it is necessary to establish a quality strategy that suits the culture and size of the company. The quality management strategy proposed in this paper is expected to contribute to the establishment of appropriate strategies for the size and purpose of the company.
Recently, major manufacturers are focusing their efforts on securing global competitiveness through smart factory, but developing countries have many difficulties in applying smart factory due to financial and technical conditions. This study is a preliminary study on the development of an ICT-based power monitoring system applicable to developing countries. The questionnaire surveyed and analyzed workers' perceptions of smart factory in a garment manufacturing factory in developing countries, Indonesia. Before and after the installation of the power monitoring system, the survey was conducted for 126 local managers and workers, and the correlation was analyzed using SPSS. As a result of analysis, factory workers in developing countries such as Indonesia are also positively aware of the necessity of introducing smart factory technology, and it is expected that the introduction of these technologies will affect job satisfaction and improve the factory environment. In addition, the result of the survey conducted after the installation of the power monitoring system increased the job satisfaction score by 5.5% compared to before the installation, and the scores on the perception of the necessity of the power monitoring system and the positive effect of the application of the system on the factory environment were increased 13% and 5.9%, respectively. It was also confirmed that managers rather than workers and female rather than male showed positive perception for the introduction of smart factory technology. The result of this study is expected to be an important reference in the direction of development of appropriate smart factory technology applicable to developing countries and the introduction of smart factory by manufacturers operating factories in developing countries.
The domestic smart factory is being built and spread rapidly, mainly by mid-sized companies and large enterprises according to the government's active introduction and support policy. But these factories only promote production system and efficiency, so harmfulness and risk factors are not considered. Therefore, to derive harmful risk factors in terms of industrial safety for 12,983 government-supported smart factory workplaces from 2014 to 2019, industrial accident status analysis compared workplaces with automation facilities and government-supported workplaces with automation facilities. Also, to reduce risks associated with domestic smart factory processes, twenty government-supported workplaces with automation facilities underwent analysis, evaluating risks through a status survey using the process evaluation table. In addition, the status survey considered region, size, industry, construction level, and accident rate; the difference in risk according to the structure of the process was confirmed. Based on the smart factory process evaluation results, statistical analysis confirmed that serial, parallel, and hybrid structures pose different risk levels and that the risks of mixed structures are greater. Finally, safety control system application was presented for risk assessment and reduction in the smart factory process, reflecting the results of disaster analysis and actual condition investigation.
In this paper, we proposed the development of a smart factory intergrated technology education platform using smart factory based CPPS (Cyber Physical Production System) and VR (Vitrual Reality) technology and educational methods using the platform. A platform has been developed to learn how to integrate 3D digital twin and BOP (Bill of Process)-based manufacturing processes. In addition, Digital Twin established a smart factory-based integrated education platform by linking mechanical systems, digital twins, and virtual reality through the OPC-UA server. Based on this platform, the smart factory integration platform is proposed to have individual elements of the smart factory integration platform through BOP-based digital twin simulation, OPC-UA integration, MES system, SCADA system, and VR interworking.
International Journal of Internet, Broadcasting and Communication
/
v.16
no.2
/
pp.203-208
/
2024
The convergence of deep learning and smart factory is drawing a lot of attentions from not only industrial but also academic circles. The objective of this article is to quantitatively review on deep learning and smart factory from 2010 to 2023. This research analyzed the 138 articles, extracted from the Core Collection of Web of Science, in terms of four dimensions such as the main trend in article publications, the main trend in article citations, the distribution of article publications by research area, and the keywords representing the main contents of published articles. The quantitative review results reveal the following four points: First, the article publications drastically grew from 2019 to 2022 in its annual trend. Second, the article citations have rapidly grown since 2018. Third, Engineering, Computer Science, and Telecommunications are the top 3 research areas composing the 138 articles. Fourth, it is the top 10 keywords such as 'deep', 'learning', 'smart', 'detection', factory', 'data', 'system', 'manufacturing', 'neural', and 'network' that represent the main contents of the 138 articles published from 2010 to 2023 in deep learning and smart factory. These findings revealed by this quantitative review will be significantly useful for deepening and widening relevant future research on deep learning and smart factory.
Journal of Information Technology Applications and Management
/
v.27
no.1
/
pp.75-95
/
2020
Smart Factory is the decisive factor of the Fourth Industrial Revolution and is a key field for national competitiveness. Until now, most smart factory research has focused on policy and technology. In order to spread more technology, it is necessary to study what factors influence the adoption of smart factory technology in the enterprise. Nevertheless, little research has been done. In this study, based on the UTAUT (Unified Theory of Acceptance and Use of Technology), which has been proved through many years of research, I have studied the factors that influence the acceptance of smart factory technology. As a result of research, performance expectancy, social influence, and facilitating conditions of UTAUT model had a positive(+) effect on behavior intention. Their relationship of influence was in the order of performance expectancy (β = .459)> facilitating conditions (β = .212)> social influence (β = .210). However, it was found that the effort expectancy did not affect the behavior intention, and the impact of the newly perceived risk on the behavior intention to use was not confirmed. The main reason is that the acceptance of smart factory technology is not a matter of personal interest but a matter of organizational choice. Trust, on the other hand, was found to be partially mediated between performance expectancy, facilitating conditions, social influence and behavior intention. For many years, many researchers have validated the UTAUT, which has been validated through various empirical studies. It is academically meaningful to begin the study of factors affecting the acceptance of smart factory technology in terms of the UTAUT. In practice, it is necessary to provide SME employees with more information related to the introduction of smart factories, to provide advanced services related to the establishment of smart factories, and to establish a standardized model for each industry.
As the $4^{th}$ industrial revolution is accelerating, IT convergence application technologies are attracting attention in various fields. In the manufacturing industry, Smart Factory technology, which is blended with IT technology, has been developed to solve the problem casued by the decrease of the labor force, and a monitoring server is required to remotely control the equipment or to inquire about the operation status of the factory. In this paper, we designed and implemented RESTful API for data sharing between factory equipment and monitoring server in Smart Factory. In order to verify the designed API, a testbed was operated for an actual plastics manufacturing plant. As a result, it was confirmed that the testbed can be operated normally in actual operating environment.
Journal of the Korea Institute of Information Security & Cryptology
/
v.26
no.5
/
pp.1323-1333
/
2016
According to spreading of smart devices and development of communication technology, the security issues come to the fore in the modern factory. Especially, the smart facpry should be considered the risk management plan how to identify and evaluate, control the risks. In this paper, we suggest the minimum security requirements applying SFRPN(Smart Factory Risk Priority Number) model to domestic smart factory on the basis of the results inspecting factories.
The Journal of the Korea institute of electronic communication sciences
/
v.16
no.5
/
pp.783-788
/
2021
Smart manufacturing is defined as the fully ICT-based manufacturing process which digitized, optimized, and automized the of manufacturing system in smart factory which includes product planning, design, production, quality, stock, procure. In this paper, we introduce the development of domestic standardization of smart factory and manufacturing data which are generated in operation of smart factory. We focus on general standardization of smart factory/ICT-based manufacturing system and data transactions related issues since the range of standardization is too wide. Based on these standardization review, we discuss the several concerns for utilization of manufacturing data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.