• Title/Summary/Keyword: smart design and construction

Search Result 310, Processing Time 0.037 seconds

Intelligent design of retaining wall structures under dynamic conditions

  • Yang, Haiqing;Koopialipoor, Mohammadreza;Armaghani, Danial Jahed;Gordan, Behrouz;Khorami, Majid;Tahir, M.M.
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.629-640
    • /
    • 2019
  • The investigation of retaining wall structures behavior under dynamic loads is considered as one of important parts for designing such structures. Generally, the performance of these structures is under the influence of the environment conditions and their geometry. The aim of this research is to design retaining wall structures based on smart and optimal systems. The use of accuracy and speed to assess the structures under different conditions is one of the important parts sought by designers. Therefore, optimal and smart systems are able to have better addressing these problems. Using numerical and coding methods, this research investigates the retaining wall structure design under different dynamic conditions. More than 9500 models were constructed and considered for modelling design. These designs include height and thickness of the wall, soil density, rock density, soil friction angle, and peak ground acceleration (PGA) variables. Accordingly, a neural network system was developed to establish an appropriate relationship between data to obtain safety factor (SF) of retaining walls under different seismic conditions. Different parameters were analyzed and the effect of each parameter was assessed separately. According to these analyses, the structure optimization was performed to increase the SF values. The optimal and smart design showed that under different PGA conditions, the structure performance can be appropriately improved while utilization of the initial (or basic) parameters leads to the structure failure. Therefore, by increasing accuracy and speed, smart methods could improve the retaining structure performance in controlling the wall failure. The intelligent design process of this study can be applied to some other civil engineering applications such as slope stability.

A Study on Big Data Analytics Services and Standardization for Smart Manufacturing Innovation

  • Kim, Cheolrim;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.91-100
    • /
    • 2022
  • Major developed countries are seriously considering smart factories to increase their manufacturing competitiveness. Smart factory is a customized factory that incorporates ICT in the entire process from product planning to design, distribution and sales. This can reduce production costs and respond flexibly to the consumer market. The smart factory converts physical signals into digital signals, connects machines, parts, factories, manufacturing processes, people, and supply chain partners in the factory to each other, and uses the collected data to enable the smart factory platform to operate intelligently. Enhancing personalized value is the key. Therefore, it can be said that the success or failure of a smart factory depends on whether big data is secured and utilized. Standardized communication and collaboration are required to smoothly acquire big data inside and outside the factory in the smart factory, and the use of big data can be maximized through big data analysis. This study examines big data analysis and standardization in smart factory. Manufacturing innovation by country, smart factory construction framework, smart factory implementation key elements, big data analysis and visualization, etc. will be reviewed first. Through this, we propose services such as big data infrastructure construction process, big data platform components, big data modeling, big data quality management components, big data standardization, and big data implementation consulting that can be suggested when building big data infrastructure in smart factories. It is expected that this proposal can be a guide for building big data infrastructure for companies that want to introduce a smart factory.

Design and Implementation of a Blockchain System for Storing BIM Files in a Distributed Network Environment

  • Seo, Jungwon;Ko, Deokyoon;Park, Sooyong;Kim, Seong-jin;Kim, Bum-Soo;Kim, Do Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.159-168
    • /
    • 2021
  • Building Information Modeling (BIM) data is a digitized construction design by worldwide construction design stands rules. Some research are being conducted to utilize blockchain for safe sharing and trade of BIM data, but there is no way to store BIM data directly in the blockchain due to the size of BIM data and technical limitation of the blockchain. In this paper, we propose a method of storing BIM data by combining a distributed file system and a blockchain. We propose two network overlays for storing BIM data, and we also propose generating the Level of Detail (LOD)-based merkle tree for efficient verification of BIM data. In addition, this paper proposes a system design for distributed storage of BIM data by using blockchain besu client and IPFS client. Our system design has a result that the processing speed stably increased despite the increase in data size.

Basic Research for Construction Standard Unit Price and BIM library Linkage (표준시장단가 및 BIM 라이브러리 연계 활용에 관한 기초연구)

  • Jin, Zheng-xun;Baek, Seung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.251-252
    • /
    • 2021
  • With the recent emergence of the 4th Industrial Revolution, the government is promoting the development of smart construction technology and institutional improvement through various policies to induce cutting-edge and technological innovation in the construction industry. As part of such smart construction technology, the application of BIM is being activated, and related regulations and guidelines are constantly being supplemented. In relation to BIM, there are many studies on the fields of library, design standards etc., but research on specific unit price utilization and unit price DB construction for calculating construction cost is insufficient. Therefore, in this study, a basic study was conducted on the linkage of the construction standard market unit price and the BIM library. Based on the basic research conducted in the future, we intend to establish specific standards for calculating BIM-based construction costs.

  • PDF

Construction of Smart Soil Using In-Situ clay soil (현장 발생토를 이용한 경량고화토(Smart Soil)의 시공사례)

  • Jung, Gwak-Soo;Lim, Yoon-Gil;Jeong, Woo-Seob
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.473-485
    • /
    • 2010
  • Lightweight materials using in-situ clay soil contain large amounts of fine grain and cement for increasing the strength, lighter weight to increase liquidity for the foam and the bulk of the material is conducted by the water. Domestic cases, Light weight soil to improve cementation and lightness using demountable mixing device is defined Smartsoil. Typical features are their self-leveling, self-compaction, folwability. By adjusting the amount of cement, the strength can be controlled artificially. And re-excavation is easy. In this paper, pre-loading method using the road due to the displacement of adjacent structures under construction as an alternative SmartSoil introduces the design and construction practices. Is to discuss and improve.

  • PDF

Mobile Platform Design for Smart Construction Under Unstructured Environments (비정형 환경에서 스마트 건설을 위한 이동 플랫폼 구현)

  • Ji-Youn, Moon;Yong-Gu, Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1243-1248
    • /
    • 2022
  • A mobile platform that can robustly operate in unstructured environments such as construction sites is an essential problem for smart construction technology development. In this paper, we introduce a mobile robot platform that can be applied to the unstructured environment to support the collection of geographical information at construction sites. The proposed mobile platform is designed to cope with not only vertical slopes but also side slopes, and the performance of overcoming the step difference of the proposed platform was analyzed through simulation experiments.

A Study on Conceptual Design of Smart Training System for Advanced Plant Design and FEED Engineers Based on Exploring Systems Engineering (시스템엔지니어링 탐색적 접근을 통한 플랜트 엔지니어링 선행설계 전문인력 양성을 위한 스마트 교육시스템 개념설계에 관한 연구)

  • Hong, Dae Geun;Park, Chang Woo;Suh, Suk Hwan;Sur, Hwal Won
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2018
  • Front End Engineering Design (FEED), currently dominated by a few advanced countries, creates the highest added-value in the in plant construction industry. In the domestic plant engineering industry, it is difficult to acquire its own technology capability and experience due to lack of experience and shortage of experts in advanced design fields such as basic design and FEED. To achieve competitiveness with the advanced countries, it is necessary to establish smart training system for advanced plant design and FEED engineers. This study aims to design an integrated training framework for plant engineering and FEED using system engineering to build a smart plant engineering education system that learns design knowledge based on educational content and experience based on design stage for chemical plant.

BIM Quality Assurance for DFS in Design Phase (설계단계에서의 BIM 안전설계 품질검토)

  • Kwon, Ocheol;Cho, Joowon;Jo, Chanwon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.5
    • /
    • pp.348-358
    • /
    • 2013
  • Since the safety accidents on the construction sites take large part of total industry disasters, research on the construction safety has been getting important. Recently, as BIM technology allows cooperation between designer and constructor groups, it becomes more active worldwide than before to study on the ways of accomplish construction safety improvement in the design phase. In this paper, we suggested a checklist for assuring construction safety in the phase of design, and performed automatic evaluation by using a BIM quality checking tool. This shows that it is possible for us to find out the construction safety has been improved in the design phase. Once the standard checklist and assurance process are developed, they are expected to play a great role of reducing disasters in the construction industry.

Performance Analysis of SMART Frame Applied to Logistics Buildings (물류시설에 SMART Frame 적용시 효용성 분석)

  • Son, Seung-Hyun;Kim, Ki-Ho;Lee, Jun-Ah;Kim, Sun-kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.14-15
    • /
    • 2018
  • Logistics facilities are characterized by wide spans and high flooring, most of which are constructed with PC (Precast Concrete) methods to meet a wide range of commercial and industrial needs. However, the PC structure is a pin joint design, and the construction cost is increased due to the restrictions caused by the installation process, and the construction period is lengthened. In order to solve the above problem, SMART Frame, which is a structural system similar to the steel frame structure, was developed by embedding a steel frame at both ends of the PC. The purpose of this study is to analyze the erection time reduction effect of steel connected precast concrete components (SMART frames) for long span and heavy loaded logistics buildings compared to existing PC frames. For this study, a logistics building constructed with pin joint PC components is selected as a case. The result is compared with the existing PC frame to confirm the erection time reduction effect.

  • PDF

Research on the Direction of Building an Integrated Smart Platform at Construction Sites (건설현장 통합 스마트플랫폼 구축방향에 대한 연구)

  • Yeon Cheol Shin;Yu Mi Moon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.620-634
    • /
    • 2024
  • Purpose: This study aims to strengthen the linkage between the construction site and the headquarters, suggest the direction of building an integrated smart platform that can actually be operated and utilized in the field, and effectively implement safety management. Method: Agile methodologies were applied to build a flexible and scalable system through cloud-based and three-tier architectures. Functional requirements were set through an on-site survey, and design and construction were carried out by reflecting personal information protection and legal requirements. Result: The integrated smart platform proposed in this study strengthens the connection between the site and the headquarters to maximize the effect of safety accident prevention and safety management. This system has improved the safety awareness of workers and managers, and has realized more efficient safety management through a unified communication system. Conclusion: In the establishment of an integrated smart platform, it is essential to reflect the characteristics of the site when selecting the development method and establishing the function plan. In the basic design and detailed design stages, it is necessary to establish security measures, design mobile functions, and review device expansion, and consider enterprise-wide safety management, user convenience, and scalability. It is also important to maintain and improve the system, reflect legal requirements, and support the elderly and foreign workers. By strengthening personal information and CCTV security and continuously improving it by reflecting user opinions, it can be expected to activate an integrated smart platform.