• Title/Summary/Keyword: smart damper

Search Result 263, Processing Time 0.02 seconds

Development of a seismic retrofit system made of steel frame with vertical slits

  • Kang, Hyungoo;Adane, Michael;Chun, Seungho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.283-294
    • /
    • 2022
  • In this study, a new seismic retrofit scheme of building structures is developed by combining a steel moment frame and steel slit plates to be installed inside of an existing reinforced concrete frame. This device has the energy dissipation capability of slit dampers with slight loss of stiffness compared to the conventional steel frame reinforcement method. In order to investigate the seismic performance of the retrofit system, it was installed inside of a reinforced concrete frame and tested under cyclic loading. Finite element analysis was carried out for validation of the test results, and it was observed that the analysis and the test results match well. An analytical model was developed to apply the retrofit system to a commercial software to be used for seismic retrofit design of an example structure. The effectiveness of the retrofit scheme was investigated through nonlinear time-history response analysis (NLTHA). The cyclic loading test showed that the steel frame with slit dampers provides significant increase in strength and ductility to the bare structure. According to the analysis results of a case study building, the proposed system turned out to be effective in decreasing the seismic response of the model structure below the given target limit state.

Study of Integrated Optimal Design of Smart Top-Story Isolation and Building Structures in Regions of Low-to-Moderate Seismicity (중약진지역 구조물과 스마트 최상층 면진시스템의 통합최적설계에 대한 연구)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.13-20
    • /
    • 2013
  • In order to reduce seismic responses of a structure, additional dampers and vibration control devices are generally considered. Usually, control performance of additional devices are investigated for optimal design without variation of characteristics of a structure. In this study, multi-objective integrated optimization of structure-smart control device is conducted and possibility of reduction of structural resources of a building structure with smart top-story isolation system has been investigated. To this end, 20-story example building structure was selected and an MR damper and low damping elastomeric bearings were used to compose a smart base isolation system. Artificial earthquakes generated based on design spectrum of low-to-moderate seismicity regions are used for structural analyses. Based on numerical simulation results, it has been shown that a smart top-story isolation system can effectively reduce both structural responses and isolation story drifts of the building structure in low-to-moderate seismicity regions. The integrated optimal design method proposed in this study can provide various optimal designs that presents good control performance by appropriately reducing the amount of structural material and damping device.

Semi-active control of seismically excited structures with variable orifice damper using block pulse functions

  • Younespour, Amir;Ghaffarzadeh, Hosein
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1111-1123
    • /
    • 2016
  • The present study aims at proposing an analytical method for semi-active structural control by using block pulse functions. The performance of the resulting controlled system and the requirements of the control devices are highly dependent on the control algorithm employed. In control problems, it is important to devise an accurate analytical method with less computational expenses. Block pulse functions (BPFs) set proved to be the most fundamental and it enjoyed immense popularity in different applications in the area of numerical analysis in systems science and control. This work focused on the application of BPFs in the control algorithm concerning decrease the computational expenses. Variable orifice dampers (VODs) are one of the common semi-active devices that can be used to control the response of civil Structures during seismic loads. To prove the efficiency of the proposed method, numerical simulations for a 10-story shear building frame equipped with VODs are presented. The controlled response of the frame was compared with results obtained by controlling the frame by the classical clipped-optimal control method based on linear quadratic regulator theory. The simulation results of this investigation indicated the proposed method had an acceptable accuracy with minor computational expenses and it can be advantageous in reducing seismic responses.

Optimum LCVA for suppressing harmonic vibration of damped structures

  • Shum, K.M.;Xu, Y.L.;Leung, H.Y.
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.461-472
    • /
    • 2017
  • Explicit design formulae of liquid column vibration absorber (LCVA) for suppressing harmonic vibration of structures with small inherent structural damping are developed in this study. The developed design formulae are also applicable to the design of a tuned mass damper (TMD) and a tuned liquid column damper (TLCD) for damped structures under harmonic force excitation. The optimum parameters of LCVA for suppressing harmonic vibration of undamped structures are first derived. Numerical searching of the optimum parameters of tuned vibration absorber system for suppressing harmonic vibration of damped structure is conducted. Explicit formulae for these optimum parameters are then obtained by a series of curve fitting techniques. The analytical result shows that the control performance of TLCD for reducing harmonic vibration of undamped structure is always better than that of non-uniform LCVA for same mass and length ratios. As for the effects of structural damping on the optimum parameters, it is found that the optimum tuning ratio decreases and the optimum damping ratio increases as the structural damping is increased. Furthermore, the optimum head loss coefficient is inversely proportional to the amplitude of excitation force and increases as the structural damping is increased. Numerical verification of the developed explicit design expressions is also conducted and the developed expressions are demonstrated to be reasonably accurate for design purposes.

Vibration control of high-rise buildings for wind: a robust passive and active tuned mass damper

  • Aly, Aly Mousaad
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.473-500
    • /
    • 2014
  • Tuned mass dampers (TMDs) have been installed in many high-rise buildings, to improve their resiliency under dynamic loads. However, high-rise buildings may experience natural frequency changes under ambient temperature fluctuations, extreme wind loads and relative humidity variations. This makes the design of a TMD challenging and may lead to a detuned scenario, which can reduce significantly the performance. To alleviate this problem, the current paper presents a proposed approach for the design of a robust and efficient TMD. The approach accounts for the uncertain natural frequency, the optimization objective and the input excitation. The study shows that robust design parameters can be different from the optimal parameters. Nevertheless, predetermined optimal parameters are useful to attain design robustness. A case study of a high-rise building is executed. The TMD designed with the proposed approach showed its robustness and effectiveness in reducing the responses of high-rise buildings under multidirectional wind. The case study represents an engineered design that is instructive. The results show that shear buildings may be controlled with less effort than cantilever buildings. Structural control performance in high-rise buildings may depend on the shape of the building, hence the flow patterns, as well as the wind direction angle. To further increase the performance of the robust TMD in one lateral direction, active control using LQG and fuzzy logic controllers was carried out. The performance of the controllers is remarkable in enhancing the response reduction. In addition, the fuzzy logic controller may be more robust than the LQG controller.

A new approach to deal with sensor errors in structural controls with MR damper

  • Wang, Han;Li, Luyu;Song, Gangbing;Dabney, James B.;Harman, Thomas L.
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.329-345
    • /
    • 2015
  • As commonly known, sensor errors and faulty signals may potentially lead structures in vibration to catastrophic failures. This paper presents a new approach to deal with sensor errors/faults in vibration control of structures by using the Fault detection and isolation (FDI) technique. To demonstrate the effectiveness of the approach, a space truss structure with semi-active devices such as Magneto-Rheological (MR) damper is used as an example. To address the problem, a Linear Matrix Inequality (LMI) based fixed-order $H_{\infty}$ FDI filter is introduced and designed. Modeling errors are treated as uncertainties in the FDI filter design to verify the robustness of the proposed FDI filter. Furthermore, an innovative Fuzzy Fault Tolerant Controller (FFTC) has been developed for this space truss structure model to preserve the pre-specified performance in the presence of sensor errors or faults. Simulation results have demonstrated that the proposed FDI filter is capable of detecting and isolating sensor errors/faults and actuator faults e.g., accelerometers and MR dampers, and the proposed FFTC can maintain the structural vibration suppression in faulty conditions.

Design of an actuator for simulating wind-induced response of a building structure

  • Park, Eun Churn;Lee, Sang-Hyun;Min, Kyung-Won;Chung, Lan;Lee, Sung-Kyung;Cho, Seung-Ho;Yu, Eunjong;Kang, Kyung-Soo
    • Smart Structures and Systems
    • /
    • v.4 no.1
    • /
    • pp.85-98
    • /
    • 2008
  • In this paper, excitation systems using a linear mass shaker (LMS) and an active tuned mass damper (ATMD) are presented to simulate the wind induced responses of a building structure. The actuator force for the excitation systems is calculated by using the inverse transfer function of a target structural response to the actuator. Filter and envelop functions are used to prevent the actuator from exciting unexpected modal responses and an initial transient response and thus, to minimize the error between the wind and actuator induced responses. The analyses results from a 76-story benchmark building problem for which the wind load obtained by a wind tunnel test is given, indicate that the excitation system installed at a specific floor can approximately reproduce the structural responses induced by the wind load applied to each floor of the structure. The excitation system designed by the proposed method can be effectively used for evaluating the wind response characteristics of a practical building structure and for obtaining an accurate analytical model of the building under wind load.

Semi-active control of vibrations of spar type floating offshore wind turbines

  • Van-Nguyen, Dinh;Basu, Biswajit;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.683-705
    • /
    • 2016
  • A semi-active algorithm for edgewise vibration control of the spar-type floating offshore wind turbine (SFOWT) blades, nacelle and spar platform is developed in this paper. A tuned mass damper (TMD) is placed in each blade, in the nacelle and on the spar to control the vibrations for these components. A Short Time Fourier Transform algorithm is used for semi-active control of the TMDs. The mathematical formulation of the integrated SFOWT-TMDs system is derived by using Euler-Lagrangian equations. The theoretical model derived is a time-varying system considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar, mooring system and the TMDs, the hydrodynamic effects, the restoring moment and the buoyancy force. The aerodynamic loads on the nacelle and the spar due to their coupling with the blades are also considered. The effectiveness of the semi-active TMDs is investigated in the numerical examples where the mooring cable tension, rotor speed and the blade stiffness are varying over time. Except for excessively large strokes of the nacelle TMD, the semi-active algorithm is considerably more effective than the passive one in all cases and its effectiveness is restricted by the low-frequency nature of the nacelle and the spar responses.

Experimental study on the vibration mitigation of offshore tension leg platform system with UWTLCD

  • Lee, Hsien Hua;Juang, H.H.
    • Smart Structures and Systems
    • /
    • v.9 no.1
    • /
    • pp.71-104
    • /
    • 2012
  • In this research, a typical tension-leg type of floating platform incorporated with an innovative concept of underwater tuned liquid column damper system (UWTLCD) is studied. The purpose of this study is to improve the structural safety by means of mitigating the wave induced vibrations and stresses on the offshore floating Tension Leg Platform (TLP) system. Based on some encouraging results from a previous study, where a Tuned Liquid Column Damper (TLCD) system was employed in a floating platform system to reduce the vibration of the main structure, in this study, the traditional TLCD system was modified and tested. Firstly, the orifice-tube was replaced with a smaller horizontal tube and secondly, the TLCD system was combined into the pontoon system under the platform. The modification creates a multipurpose pontoon system associated with vibration mitigation function. On the other hand, the UWTLCD that is installed underwater instead would not occupy any additional space on the platform and yet provide buoyancy to the system. Experimental tests were performed for the mitigation effect and parameters besides the wave conditions, such as pontoon draught and liquid-length in the TLCD were taken into account in the test. It is found that the accurately tuned UWTLCD system could effectively reduce the dynamic response of the offshore platform system in terms of both the vibration amplitude and tensile forces measured in the mooring tethers.

Seismic Response Control of Building Structures using Semiactive Smart Dampers (준능동 스마트 감쇠기를 사용한 빌딩구조물의 지진응답제어)

  • Kim Hyun-Su;Raschke Paul N.;Lee Dang-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.451-458
    • /
    • 2006
  • The goal of many researchers in the field of structural engineering is to reduce both damage to building structures and discomfort of their inhabitants during strong motion seismic events. The present paper reports on analytical work conducted with this aim in mind as a prior research of experimental study. A four-story, 6.4 m tall, laboratory model of a building is employed as a example structure. The laboratory structure has graphite epoxy columns and each floor is equipped with a chevron brace that serves to resist inter-story drift with the installation of a magnetorheological (MR) damper. An artificial excitation has been generated with a robust range of seismic characteristics. A series of numerical simulations demonstrates that an optimized fuzzy controller is capable of robust performance for a variety of seismic base motions. Optimization of the fuzzy controller is achieved using multi-objective genetic algorithm(MOGA), i.e. NSGA-II. Multiple objective functions are used in order to reduce both peak and root-means-squared displacement and accelerations at the floor levels of the building.

  • PDF