• 제목/요약/키워드: smart base-isolated

검색결과 36건 처리시간 0.026초

Damage index sensor for smart structures

  • Mita, Akira;Takahira, Shinpei
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.331-346
    • /
    • 2004
  • A new sensor system is proposed for measuring damage indexes. The damage index is a physical value that is well correlated to a critical damage in a device or a structure. The mechanism proposed here utilizes elastic buckling of a thin wire and does not require any external power supply for memorizing the index. The mechanisms to detect peak strain, peak displacement, peak acceleration and cumulative deformation as examples of damage indexes are presented. Furthermore, passive and active wireless data retrieval mechanisms using electromagnetic induction are proposed. The passive wireless system is achieved by forming a closed LC circuit to oscillate at its natural frequency. The active wireless sensor can transmit the data much further than the passive system at the sacrifice of slightly complicated electric circuit for the sensor. For wireless data retrieval, no wire is needed for the sensor to supply electrical power. For the active system, electrical power is supplied to the sensor by radio waves emitted from the retrieval system. Thus, external power supply is only needed for the retrieval system when the retrieval becomes necessary. Theoretical and experimental studies to show excellent performance of the proposed sensor are presented. Finally, a prototype damage index sensor installed into a 7 storey base-isolated building is explained.

Damage identification of substructure for local health monitoring

  • Huang, Hongwei;Yang, Jann N.
    • Smart Structures and Systems
    • /
    • 제4권6호
    • /
    • pp.795-807
    • /
    • 2008
  • A challenging problem in structural damage detection based on vibration data is the requirement of a large number of sensors and the numerical difficulty in obtaining reasonably accurate results when the system is large. To address this issue, the substructure identification approach may be used. Due to practical limitations, the response data are not available at all degrees of freedom of the structure and the external excitations may not be measured (or available). In this paper, an adaptive damage tracking technique, referred to as the sequential nonlinear least-square estimation with unknown inputs and unknown outputs (SNLSE-UI-UO) and the sub-structure approach are used to identify damages at critical locations (hot spots) of the complex structure. In our approach, only a limited number of response data are needed and the external excitations may not be measured, thus significantly reducing the number of sensors required and the corresponding computational efforts. The accuracy of the proposed approach is illustrated using a long-span truss with finite-element formulation and an 8-story nonlinear base-isolated building. Simulation results demonstrate that the proposed approach is capable of tracking the local structural damages without the global information of the entire structure, and it is suitable for local structural health monitoring.

Hysteretic model of isolator gap damper system and its equivalent linearization for random earthquake response analysis

  • Zhang, Hongmei;Gu, Chen
    • Smart Structures and Systems
    • /
    • 제29권3호
    • /
    • pp.485-498
    • /
    • 2022
  • In near-fault earthquake prone areas, the velocity pulse-like seismic waves often results in excessive horizontal displacement for structures, which may result in severe structural failure during large or near-fault earthquakes. The recently developed isolator-gap damper (IGD) systems provide a solution for the large horizontal displacement of long period base-isolated structures. However, the hysteresis characteristics of the IGD system are significantly different from the traditional hysteretic behavior. At present, the hysteretic behavior is difficult to be reflected in the structural analysis and performance evaluation especially under random earthquake excitations for lacking of effective analysis models which prevent the application of this kind of IGD system. In this paper, we propose a mathematical hysteretic model for the IGD system that presents its nonlinear hysteretic characteristics. The equivalent linearization is conducted on this nonlinear model, which requires the variances of the IGD responses. The covariance matrix for the responses of the structure and the IGD system is obtained for random earthquake excitations represented by the Kanai-Tajimi spectrum by solving the Lyapunov equation. The responses obtained by the equivalent linearization are verified in comparison with the nonlinear responses by the Monte Carlo simulation (MCS) analysis for random earthquake excitations.

사회적 가치 실현을 위한 디자인의 접근 사례 (Approach case design for achieve the social values)

  • 김명윤
    • 스마트미디어저널
    • /
    • 제3권1호
    • /
    • pp.46-51
    • /
    • 2014
  • 현대적 관점의 디자인은 기업의 경제적 이윤창출을 목적으로 생산능률의 향상을 위한 디자인이나 판매 촉진을 위한 스타일링에 초점을 맞췄던 과거의 개념에서 변화하였다. '인간중심 디자인'으로 디자인이 시장과 자본의 원리뿐만 아니라 전통이나 문화에 적합한 인간 중심의 디자인, 문화중시의 디자인으로 나아가 사회적, 윤리적 책임과 가치가 함께 하는 디자인으로 향상되어 발전되어지고 있다. 이러한 현재의 디자인은 개인과 사회에서 만들어지고 습득된 문화에 기반을 두고 잠재되거나 표출된 사회적 가치를 중시하는 디자인의 결과물이며 이를 제공하는 디자이너의 책무로 여겨지기도 한다. 디자인의 사회적 영향에 대한 고려와 함께 검토되어야 하는 '디자인의 사회적 가치'실현을 위해 첫째, 소외되었으나 간과되어서는 안되는 이들을 위한 인간중심의 디자인과 둘째, 지역과 상황에 적합하며 지역사회 발전에 공헌하는 문화중심의 디자인과 셋째, 익숙한 아이디어들 선선한 패러다임으로 대체한 사용성 중심의 디자인에 대해 예시하였다. 이는 디자인이 갖는 가능과 의미를 목적적인 관점에서 제시하여 사회적 문제와 인간을 위한 방법을 디자인의 '문제의 발견'과 '문제해결 능력'에서 찾아 차후 사회적 가치의 실현과 확산에 대한 연구로 진행될 것이다.

Comparison of seismic behavior of long period SDOF systems mounted on friction isolators under near-field earthquakes

  • Loghman, Vahid;Khoshnoudian, Faramarz
    • Smart Structures and Systems
    • /
    • 제16권4호
    • /
    • pp.701-723
    • /
    • 2015
  • Friction isolators are one of the most important types of bearings used to mitigate damages of earthquakes. The adaptive behavior of these isolators allows them to achieve multiple levels of performances and predictable seismic behavior during different earthquake hazard levels. There are three main types of friction isolators. The first generation with one sliding surface is known as Friction Pendulum System (FPS) isolators. The double concave friction pendulum (DCFP) with two sliding surfaces is an advanced form of FPS, and the third one, with fully adaptive behavior, is named as triple concave friction pendulum (TCFP). The current study has been conducted to investigate and compare seismic responses of these three types of isolators. The structure is idealized as a two-dimensional single degree of freedom (SDOF) resting on isolators. The coupled differential equations of motion are derived and solved using state space formulation. Seismic responses of isolated structures using each one of these isolators are investigated under seven near fault earthquake motions. The peak values of bearing displacement and base shear are studied employing the variation of essential parameters such as superstructure period, effective isolation period and effective damping of isolator. The results demonstrate a more efficient seismic behavior of TCFP isolator comparing to the other types of isolators. This efficiency depends on the selected effective isolation period as well as effective isolation damping. The investigation shows that increasing the effective isolation period or decreasing the effective isolation damping improves the seismic behavior of TCFP compared to the other isolators. The maximum difference in seismic responses, the base shear and the bearing displacement, for the TCFP isolator are calculated 26.8 and 13.4 percent less than the DCFP and FPS in effective isolation damping equal to10%, respectively.

Vertical equipment isolation using piezoelectric inertial-type isolation system

  • Lu, Lyan-Ywan;Lin, Ging-Long;Chen, Yi-Siang;Hsiao, Kun-An
    • Smart Structures and Systems
    • /
    • 제26권2호
    • /
    • pp.195-211
    • /
    • 2020
  • Among anti-seismic technologies, base isolation is a very effective means of mitigating damage to structural and nonstructural components, such as equipment. However, most seismic isolation systems are designed for mitigating only horizontal seismic responses because the realization of a vertical isolation system (VIS) is difficult. The difficulty is primarily due to conflicting isolation stiffness demands in the static and dynamic states for a VIS, which requires sufficient rigidity to support the self-weight of the isolated object in the static state, but sufficient flexibility to lengthen the isolation period and uncouple the ground motion in the dynamic state. To overcome this problem, a semi-active VIS, called the piezoelectric inertia-type vertical isolation system (PIVIS), is proposed in this study. PIVIS is composed of a piezoelectric friction damper (PFD) and a leverage mechanism with a counterweight. The counterweight provides an uplifting force in the static state and an extra inertial force in the dynamic state; therefore, the effective vertical stiffness of PIVIS is higher in the static state and lower in the dynamic state. The PFD provides a controllable friction force for PIVIS to further prevent its excessive displacement. For experimental verification, a shaking table test was conducted on a prototype PIVIS controlled by a simple controller. The experimental results well agree with the theoretical results. To further investigate the isolation performance of PIVIS, the seismic responses of PIVIS were simulated numerically by considering 14 vertical ground motions with different characteristics. The responses of PIVIS were compared with those of a traditional VIS and a passive system (PIVIS without control). The numerical results demonstrate that compared with the traditional and passive systems, PIVIS can effectively suppress isolation displacement in all kinds of earthquake with various peak ground accelerations and frequency content while maintaining its isolation efficiency. The proposed system is particularly effective for near-fault earthquakes with long-period components, for which it prevents resonant-like motion.