• Title/Summary/Keyword: smart ITS

Search Result 2,561, Processing Time 0.028 seconds

Experimental assessment of the piezoelectric transverse d15 shear sensing mechanism

  • Berik, Pelin;Benjeddou, Ayech;Krommer, Michael
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.567-585
    • /
    • 2014
  • The piezoelectric transverse $d_{15}$ shear sensing mechanism is firstly assessed experimentally for a cantilever smart sandwich plate made of a piezoceramic axially poled patched core and glass fiber reinforced polymer composite faces. Different electrical connections are tested for the assessment of the sensor performance under a varying amplitude harmonic (at 24 Hz) force. Also, the dynamic response of the smart sandwich composite structure is monitored using different acquisition devices. The obtained experimentally sensed voltages are compared to those resulting from the benchmark three-dimensional piezoelectric coupled finite element simulations using a commercial code where realistic features, like equipotential conditions on the patches' electrodes and mechanical updating of the clamp, are considered. Numerically, it is found that the stiffness of the clamp, which is much softer than the ideal one, has an enormous influence on the sensed voltage of its adjacent patch; therefore, sensing with the patch on the free side would be more advantageous for a cantilever configuration. Apart from confirming the latter result, the plate benchmark experimental assessment showed that the parallel connection of its two oppositely poled patches has a moderate performance but better than the clamp side patch acting as an individual sensor.

A Study on Radiated and Conducted Noise for Small Electrical Energy Storage System due to Its Operating State (소형 전기에너지저장장치 운전조건에 따른 방사 및 전도 방해에 관한 연구)

  • Jung, Jeong-Il;Ahn, Gun-Hyun;Kim, Young-Sung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.1
    • /
    • pp.18-22
    • /
    • 2015
  • When using a secondary battery in energy storage units, if the grid is in light duty the active power is stored so it can be used when the grid is in heavy duty. This makes possible for the load equalize and make the grid optimized. Recently the government is trying to propagate this technology. Depending on its capacity this kind of electric energy storage unit is used in adjusting the frequency, break up the energy peak in summer and winter, stabilize the energy output of renewable energy which can change unstably because of the environment. Which makes it possible to stabilize the grid. It is anticipated that market of 120 trillion won will be developed worldwide in 2030. Currently in Korea a steady supply is in progress. However because of stray electromagnetic waves some other electronics are malfunctioning. This paper covers the research in the method to detect the emission noise in small electric energy storage units using lithium secondary batteries and battery management system, Power conditioning systems with CIPSR standards. And the research of a more efficient method to measure such stray electromagnetic waves.

SVM-Based Speaker Verification System for Match-on-Card and Its Hardware Implementation

  • Choi, Woo-Yong;Ahn, Do-Sung;Pan, Sung-Bum;Chung, Kyo-Il;Chung, Yong-Wha;Chung, Sang-Hwa
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.320-328
    • /
    • 2006
  • Using biometrics to verify a person's identity has several advantages over the present practice of personal identification numbers (PINs) and passwords. To gain maximum security in a verification system using biometrics, the computation of the verification as well as the storing of the biometric pattern has to take place in a smart card. However, there is an open issue of integrating biometrics into a smart card because of its limited resources (processing power and memory space). In this paper, we propose a speaker verification algorithm using a support vector machine (SVM) with a very few features, and implemented it on a 32-bit smart card. The proposed algorithm can reduce the required memory space by a factor of more than 100 and can be executed in real-time. Also, we propose a hardware design for the algorithm on a field-programmable gate array (FPGA)-based platform. Based on the experimental results, our SVM solution can provide superior performance over typical speaker verification solutions. Furthermore, our FPGA-based solution can achieve a speed-up of 50 times over a software-based solution.

  • PDF

A feasibility study on smart base isolation systems using magneto-rheological elastomers

  • Koo, Jeong-Hoi;Jang, Dong-Doo;Usman, Muhammad;Jung, Hyung-Jo
    • Structural Engineering and Mechanics
    • /
    • v.32 no.6
    • /
    • pp.755-770
    • /
    • 2009
  • This study proposes a new smart base isolation system that employs Magneto-Rheological Elastomers (MREs), a class of smart materials whose elastic modulus or stiffness can be varied depending on the magnitude of an applied magnetic field. It also evaluates the dynamic performance of the MRE-based isolation system in reducing vibrations in structures subject to various seismic excitations. As controllable stiffness elements, MREs can increase the dynamic control bandwidth of the isolation system, improving its vibration reduction capability. To study the effectiveness of the MRE-based isolation system, this paper compares its dynamic performance in reducing vibration responses of a base-isolated single-story structure (i.e., 2DOF) with that of a conventional base-isolation system. Moreover, two control algorithms (linear quadratic regulator (LQR)-based control and state-switched control) are considered for regulating the stiffness of MREs. The simulation results show that the MRE-based isolation system outperformed the conventional system in suppressing the maximum base drift, acceleration, and displacement of the structure.

Piezoceramic d15 shear-induced direct torsion actuation mechanism: a new representative experimental benchmark

  • Berik, Pelin;Benjeddou, Ayech;Krommer, Michael
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.483-499
    • /
    • 2013
  • A new piezoceramic $d_{15}$ shear-induced torsion actuation mechanism representative benchmark is proposed and its experimentations and corresponding 3D finite element (FE) simulations are conducted. For this purpose, a long and thin smart sandwich cantilever beam is dimensioned and built so that it can be used later for either validating analytical Saint Venant-type solutions or for analyzing arm or blade-based smart structures and systems applications. The sandwich beam core is formed by two adjacent rows of 8 oppositely axially polarized d15 shear piezoceramic patches, and its faces are dimensionally identical and made of the same glass fiber reinforced polymer composite material. Quasi-static and static experimentations were made using a point laser sensor and a scanning laser vibrometer, while the 3D FE simulations were conducted using the commercial software $ABAQUS^{(R)}$. The measured transverse deflection by both sensors showed strong nonlinear and hysteretic (static only) variation with the actuation voltage, which cannot be caught by the linear 3D FE simulations.

Required Capacity Assessment of Energy Storage System for Relieving Operation Condition of SPS Using Generator Acceleration Energy (발전기 가속에너지를 이용한 고장파급방지장치 운전조건 완화용 전기저장장치 적정용량 산정방안)

  • Song, Seung-Heon;Choi, Woo-Yeong;Gwon, Han-Na;Kook, Kyung Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Due to the highly concentrated power plants integrated through the limited transmission lines in Korea, a Special Protection System(SPS) has been applied to stabilize the power systems by instantly tripping the pre-determined generators in a large-scaled power plant when a fault occurs on the drawing transmission lines. Moreover, power outputs of those generators are constrained to avoid any activation of Under Frequency Load Shedding(UFLS) even after those generators are tripped by SPS action. For this, this paper proposes a method for calculating the required capacity of Energy Storage System(ESS) expected to relieve the operating constraints to generators using its fast response for controlling power system frequency. The proposed method uses the generator acceleration energy to derive the stable condition during the SPS action. In addition, its effectiveness is verified by the case studies adopting actual SPS operations in Korean power systems.

Neural Network and Cloud Computing for Predicting ECG Waves from PPG Readings

  • Kosasih, David Ishak;Lee, Byung-Gook;Lim, Hyotaek
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.11-20
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

A Study on the Selection of Highly Flexible Blanket for Reverse Offset Printing (Reverse Offset Printing용 고신축성 Blanket 재료 선정에 관한 연구)

  • Shin, Seunghang;Kim, Seok;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.121-127
    • /
    • 2021
  • Reverse offset printing is considering as an emerging technology for printed electronics owing to its environmentally friendliness and cost-effectiveness. In reverse offset printing, selecting the materials for cliché and blanket is critical because of its minimum resolution, registration errors, aspect ratio of reliefs, pattern area, and reusability. Various materials such as silicon, quartz, glass, electroplated nickel plates, and imprinted polymers on rigid substrates can be used for the reverse offset printing of cliché. However, when new structures are designed for specific applications, new clichés need to re-fabricated each time employing multiple time-consuming and costly processes. Therefore, by modifying the blanket materials containing the printing ink, several new structures can be easily created using the same cliché. In this study, we investigated various elastomeric materials and evaluated their applicability for designing a highly stretchable blanket with controlled elastic deformation to implement tunable reverse offset printing.

Force Tracking Control of a Smart Flexible Gripper Featuring Piezoceramic Actuators (압전 세라믹 작동기로 구성된 스마트 유연 그리퍼의 힘 추적 제어)

  • Choi, Seung-Bok;Cheong, Chae-Cheon;Lee, Chul-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.174-184
    • /
    • 1997
  • This paper presents a robust force tracking control of a smart flexible gripper featured by a piezoceramic actuator characterizing its durability and quick response time. A mathematical governing equation for the proposed gripper structure is derived by employing Hamilton's principle and a state space control model is subsequently obtained through model analysis. Uncertain system parameters such as frequency variation are included in the control model. A sliding mode control theory which has inherent robustness to the sys- tem uncertainties is adopted to design a force tracking controller for the piezoceramic actuator. Using out- put information from the tip force sensor, a full-order observer is constructed to estimate state variables of the system. Force tracking performances for desired trajectories represented by sinusoidal and step func- tions are evaluated by undertaking both simulation and experimental works. In addition, in order to illustrate practical feasibility of the proposed method, a two-fingered gripper is constructed and its performance is demonstrated by showing a capability of holding an object.

  • PDF

Energy Policies and Research/Development Trends in the USA

  • Kirkici, Hulya;Bernstein, Bruce
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.5
    • /
    • pp.197-201
    • /
    • 2010
  • As the world population increases and technology advances, the energy consumption and need for more energy increase. Communities and governments regularly address these needs and set policies for future energy generation and uses. This paper reviews current energy policies of the USA and the current trends in research and development efforts, for sustainable and renewable energy sources. Furthermore, the recent topic of IEEE's Smart Grid initiatives is discussed, and its role in the dielectrics and electrical insulation research is presented.