• Title/Summary/Keyword: smart Diffuser

Search Result 3, Processing Time 0.019 seconds

Design and Implementation of prototype model of Smart Diffuser using Smart Phone (스마트폰을 이용한 스마트 디퓨저의 프로토 타입 모델 설계 및 구현)

  • Choi, Sung-Jai
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.149-154
    • /
    • 2020
  • This paper presented a design and a implementation of prototype model which is the smart diffuser device controlled by using Bluetooth technology in the smart phone. We used the ultrasonic waves oscillator so that the smart diffuser was able to spray oil into a device. The device was developed to find out the high brightness led colors switched during spraying the oil. By using the Li-Po battery of 40mAh capacity, we were able to design this portable device was prolonged available time to use and to solve the charging time problem. We realized the availability of prototype model which is using the Bluetooth Low Energy for operating the low power driving.

Prediction of Hydraulic Performance of a Scaled-Down Model of SMART Reactor Coolant Pump (스마트 원자로냉각재펌프의 축소모형에 대한 수력성능 예측)

  • Kwon, Sun-Guk;Park, Jin-Seok;Yu, Je-Yong;Lee, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1059-1065
    • /
    • 2010
  • An analysis was conducted to predict the hydraulic performance of a reactor coolant pump (RCP) of SMART at the off-design as well as design points. In order to reduce the analysis time efficiently, a single passage containing an impeller and a diffuser was considered as the computational domain. A stage scheme was used to perform a circumferential averaging of the flux on the impeller-diffuser interface. The pressure difference between the inlet and outlet of the pump was determined and was used to compute the head, efficiency, and break horse power (BHP) of a scaled-down model under conditions of steady-state incompressible flow. The predicted curves of the hydraulic performance of an RCP were similar to the typical characteristic curves of a conventional mixed-flow pump. The complex internal fluid flow of a pump, including the internal recirculation loss due to reverse flow, was observed at a low flow rate.

Computational Performance Prediction of Main Coolant Pump for the Integral Reactor SMART (일체형원자로 SMART 냉각재 순환펌프의 전산성능예측)

  • Kim M. H;Lee J. S;Park J. S;Kim J. I;Kim K. K
    • Journal of computational fluids engineering
    • /
    • v.8 no.3
    • /
    • pp.32-40
    • /
    • 2003
  • CFD analyses of the three-dimensional turbulent flow in the impeller and diffuser of an axial flow pump including suction and discharge parts are presented and compared with experimental data. The purpose of the current study is to validate the CFD method for the performance analysis of the main coolant pump for SMART and to investigate the effect of suction and discharge shapes on the pump performance. To generate a performance curve, not only the design point but also the off-design points were computed. The results were compared with available experimental data in terms of head generated. At the design point, the analysis accurately predicts the experimental head value. In the range of the higher flow rates, the results are also in very good agreement with the experimental data, in magnitude but also in terms of slope of variation. For lower flow rates, the results shows that the analysis considering the suction and discharge well describe the typical S-shape performance curve of the axial pump.